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ABSTRACT

Nonlinear Model Predictive Control for a Managed Pressure Drilling with
High-Fidelity Drilling Simulators

Junho Park
Department of Chemical Engineering, BYU
Master of Science

The world’s energy demand has been rapidly increasing and is projected to continue grow-
ing for at least the next two decades. With increasing global energy demand and competition
from renewable energy, the oil and gas industry is striving for more efficient petroleum produc-
tion. Many technical breakthroughs have enabled the drilling industry to expand the exploration to
more difficult drilling such as deepwater drilling and multilateral directional drilling. For example,
managed pressure drilling (MPD) offers ceaseless operation with multiple manipulated variables
(MV) and wired drill pipe (WDP) provides two-way, high-speed measurements from bottom hole
and along-string sensors. These technologies have maximum benefit when applied in an automa-
tion system or as a real-time advisory tool. The objective of this study is to investigate the benefit
of nonlinear model-based control and estimation algorithms with various types of models. This
work presents a new simplified flow model (SFM) for bottomhole pressure (BHP) regulation in
MPD operations. The SFM is embedded into model-based control and estimation algorithms that
use model predictive control (MPC) and moving horizon estimation (MHE), respectively. This
work also presents a new Hammerstein-Wiener nonlinear model predictive controller for BHP
regulation. Hammerstein-Wiener models employ input and output static nonlinear blocks before
and after linear dynamics blocks to simplify the controller design. The control performance of
the new Hammerstein-Wiener nonlinear controller is superior to conventional PID controllers in
a variety of drilling scenarios. Conventional controllers show severe limitations in MPD because
of the interconnected multivariable and nonlinear nature of drilling operations. BHP control per-
formance is evaluated in scenarios such as drilling, pipe connection, kick attenuation, and mud
density displacement and the efficacy of the SFM and Hammerstein-Wiener models is tested in
various control schemes applicable to both WDP and mud pulse systems. Trusted high-fidelity
drilling simulators are used to simulate well conditions and are used to evaluate the performance
of the controllers using the SFM and Hammerstein-Wiener models. The comparison between non-
WDP (semi-closed loop) and WDP (full-closed loop) applications validates the accuracy of the
SFM under the set of conditions tested and confirms comparability with model-based control and
estimation algorithms. The SFM MPC maintains the BHP within + 1 bar of the setpoint for each
investigated scenario, including for pipe connection and mud density displacement procedures that
experience a wider operation range than normal drilling.

Keywords: managed pressure drilling, nonlinear model predictive control, moving horizon estima-
tion, Hammerstein-Wiener MPC, simplified drilling flow model
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CHAPTER 1. INTRODUCTION

Automation systems are increasingly important in many industries, especially those indus-
tries that need to reduce manual processes to improve efficiency, process economics, and reduce
risk. In addition to improving safety and convenience, automation systems enable optimization
strategies that are almost impossible to consistently apply by manual operation. The drilling indus-
try has delayed automation longer than the downstream chemical processing industry because of
limitations including inadequate measurements and manipulated variables that cannot be adjusted
continuously. However, the rapidly changing crude oil market and desire to reduce operational
variability and risk has renewed interest in drilling automation. This chapter introduces impor-
tant drilling mechanisms and recent technical enhancements in drilling operations. The advanced

control and estimation algorithms that are of interest to drilling operations are also discussed.

1.1 Qil and Gas Drilling Technology

Drilling technology has been implemented since ancient times, most commonly for the ex-
traction of underground water resources. Drilling, once accomplished by man or animal power, has
evolved into the large rigs that are prevalent today, an evolution that in large part was made possible
by advances with the combustion engine. In modern drilling there are two established methods:
cable-tool drilling and rotary drilling. Cable-tool drilling, invented earlier than rotary drilling, uses
up and down motion of the rod with a sharp bit at the end of it. A relatively simple method, cable-
tool drilling is still employed today, particularly for shallow oil wells. Alternately, rotary drilling
uses rotation motion of the drill string to cut the rock formation with different types of drill bits
and is the most popular choice for the oil and gas industry. It is a more complicated and efficient
method than cable-tool drilling, enabling deeper and faster drilling. In addition to the advantages
of rotary drilling, rotary drilling is also equipped with advanced technologies such as managed

pressure drilling (MPD), directional drilling, and wired drill pipe (WDP). This chapter introduces
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the main components of rotary drilling rigs and the functions of each component. In addition, it

discusses MPD and WDP, two advanced technologies closely linked to drilling automation.

1.1.1 Overview of Rotary Drilling

The basic mechanism of the rotary drilling process is penetration into the rock formation
by cutting the rock with a combination of downward force and rotating motion. This generates the
fracture and frictional force between the drill bit and the surface of the rock. The rock cuttings
are continuously transported to the surface by the drilling fluid (generally called drilling mud)
circulation system. The main components of the rotary drilling rigs are divided into two parts:
surface equipment and subsurface equipment. Surface equipment consists of a hoisting system,
rotating system, and mud circulation system while subsurface equipment consists of a drill string
and bottomhole assembly (BHA).

The power related to rotation, lifting, and mud circulation is generated and driven from the
surface equipment. All the driving forces are transferred to the bottomhole through the drill string
and mud. The hoisting system lifts up and lowers the drill string into and out of the borehole for
purposes including pipe stand connection, bit replacement, and control of the drill string weight
during normal drilling operations. A pipe connection procedure is necessary for extending the drill
string and is accomplished by adding a new segment of drill pipe to the existing block as the drill
deepens. Pipe connection takes place every 20 to 40 minutes depending on the rate of penetration
(ROP). Dirill bit replacement is not desired, but becomes necessary when a drill bit breaks or is
otherwise damaged. Because the entire drill string has to be taken out to replace a broken bit, the
non-productive time (NPT) is lengthened significantly by drill bit replacement. Unlike the first
two functions of the hoisting system, controlling the weight of the drill string, called weight on
bit (WOB), is a continuous part of regular drilling operations. The WOB is one of the important
operation variables that can be adjusted by changing the hook load at the surface. On the other
hand, the main function of the rotating system is to generate the rotation of the drill string and
transfer the rotation to the drill bit at the desired revolutions per minute (RPM). The WOB and
bottomhole RPM directly affect the ROP. Inadequately adjusted WOB and RPM can cause severe
drilling problems by triggering vibration of the drill string. Drill string vibration can either badly

affect.the ROP.or cause failure.in the bit or drill string. The hoisting and rotating systems directly

2
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impact the WOB and RPM, respectively. These relationships are classified as part of the drill string
dynamics, whereas the mud circulation system is part of the drilling hydraulics. Drilling mud is
a mixture of various chemical additives with water or oil that removes heat and cuttings from the
bottombhole. It is fed by the mud pump from the surface, through the drill pipe, and sprayed out at
the bottomhole through the bit nozzle. Mud carries the rock cuttings through the annulus up to the
surface. The mud is regenerated at the mud pit by separating the cuttings and reconditioning the
desired properties before it is recycled back down the drill string.

Beyond carrying rock cuttings, drilling mud serves to balance the formation pressure, trans-
mit data via mud-pulse telemetry, and provide cooling and lubrication for the drill bit. The hydro-
static pressure and frictional pressure of the drilling mud ensure the pressure at the bottomhole,
or more specifically the open hole area, is maintained higher than the formation pore pressure to
block the influx of hydrocarbon gas into the borehole. This phenomenon of gas influx is com-
monly referred to as a gas kick. Hydrocarbon gas resulting from a kick has to subsequently be
circulated out with heavier mud or stopped with a blowout preventer. Unsuccessful control of the
gas kick can cause a catastrophic blow-out. Formation fracture pressure and collapse pressure
profiles also exist above and further below the pore pressure, respectively. For conventional ‘over-
balanced drilling’, the bottomhole pressure (BHP) should be maintained between the pore pressure
and fracture pressure to block the formation gas entering into the wellbore. Conversely, more re-
cently developed ‘underbalanced drilling’ can be implemented, wherein gas influx is intentionally
allowed by maintaining the BHP lower than pore pressure. A multi-phase separator at the surface
recovers the hydrocarbon fluid from the mud. The acceptable pressure range, normally for overbal-
anced drilling, is called the ‘drilling window’. The other important function of drilling mud is to
transmit bottomhole data such as pressure, temperature, and information related to the drill string
dynamics and directional drilling. In this data transmitting system, called mud-pulse telemetry
(MPT), the mud acts as a medium for the pulse signals that are generated from the bottomhole.

Subsurface equipment consists of two important parts. First is the upper drill string that
is an assembled collection of drill pipes, and second is the lower section of drill string referred as
the BHA. The BHA includes the drill bit at the end as well as the sensor packages and devices for
directional drilling such as a Rotary Steerable system (RSS). The BHA is the heaviest section of

the drill string and provides the required WOB for generating downward force.
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Figure 1.1: Schematic representation of drilling window

1.1.2 Managed Pressure Drilling

BHP regulation is critical for drilling in many formations. As briefly mentioned in the pre-
vious section, BHP should be maintained within the drilling window to prevent drilling problems
(Figure 1.1). For example, if the BHP drops below the pore pressure, gas may enter into the well-
bore from the formation, causing a gas kick that often requires drilling operations to be suspended
to circulate out the gas. The gas influx can evolve into a catastrophic ‘blow out’ when it is not
treated properly. If the downhole pressure drops further, the well wall may collapse, leading to a
stuck drill string that is held in place by formation fragments. On the other hand, if the downhole
pressure exceeds the fracture pressure, a significant amount of mud may escape into the formation,
increasing the operating cost for replenishing the mud. Lost circulation material or additional cas-
ing maybe introduced to plug the fractured reservoir. If the downhole pressure increases above the
overburden pressure, the formation will be damaged by formation fracture.

In a conventional drilling system, there are two variables to control the BHP: mud density

and mud flow rate. However, because the wellbore is open to the atmosphere at the surface, it is
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hard to achieve precise BHP control by adjusting only these two variables. Dynamic BHP, which
refers to the BHP when the mud is circulating, is a summation of the hydrostatic pressure of mud
column and the frictional pressure of the mud flow. Static BHP refers only to the hydrostatic
pressure when the mud is not circulating, which regularly occurs for pipe connection. In general,
the mud density is kept constant until the either the dynamic or static BHP get close to the fracture

pressure or pore pressure, respectively. (Figure 1.2).

Pressure and Mud Density —

ud Density \

Figure 1.2: Wide drilling window

For wells with a conventional drilling system that have a narrow drilling window (Fig-
ure 1.3) (normally deepwater wells) BHP control is more demanding because the mud density
frequently changes, as observed in Figure 1.3, and every density adjustment requires a stop in
drilling that lengthens the NPT. Furthermore, such systems do not have the means to control kick
without stopping the mud circulation, which adds to the NPT. These systems do not have enough
of a pressure margin between dynamic and static BHP when pipe connection occurs, described in

Figure 1.1 as bumps in the BHP plot.
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Figure 1.3: Narrow drilling window

In a MPD system, the wellbore is completely isolated from the atmosphere by the rotating
control device (RCD) and the mud return flow is routed to the choke manifold (Figure 1.4). This
choke valve improves the BHP control significantly enabling the fast and precise pressure control
without stopping the drilling. Aside from the choke manifold system, another option for improved
MPD is the back pressure pump. The back pressure pump recirculates the mud from the mud
pit to the choke valve inlet to generate more annulus pressure by adding more annular flow. The
back pressure pump is usually activated to compensate for the frictional pressure when the mud
circulation stops for pipe connection, which removes the pressure difference present during normal
drilling. Thus, MPD opens the door to implementation of an automated BHP control system while
providing arich array of challenges for control and automation applications using hydraulic models

and simulators [1-7].

1.1.3 Wired Drill Pipe

Increasing demands of petroleum resources have driven the oil and gas industries to explore
more challenging reservoirs such as deepwater reservoirs that have narrow drilling windows. Also,

the evolution of horizontal drilling requires more sophisticated path control in terms of directional
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Figure 1.4: Schematic of the Automated MPD System [8]

drilling. The improved data communication between bottomhole tools and surface crews or equip-
ment is the most crucial factor to achieve the accessibility to these reservoirs. MPT is an existing
method of data transmission which is being replaced by WDP [9]. MPT uses the pulse signals
generated by the opening and closing movement of valves in the drill string. This up and down
movement of mud flow results in a pressure pulse. This pressure pulse signal travels through the
mud to either the surface or bottomhole with different patterns that are captured and interpreted
by the surface device or bottomhole tools, respectively. The average data communication speed of
MPT is about 5-10 BPS [10] which is not sufficient for configuring a real-time automation system.
Moreover, because the mud plays a role as a medium of the signal transmission, it limits the data

availability and makes it complicated to interpret the pulse signal when the mud does not circulate
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When using a WDP system, the data transmission rate is dramatically increased by up to
10° BPS [11,12]. WDP technology provides two-way and high-speed measurements from the bot-
tomhole and intermediary string sensors that enable more appropriate decision making regardless

of the level of mud circulation.

1.2 Model Based Control and Estimation

This section focuses on model predictive control (MPC) and moving horizon estimation
(MHE) algorithms for BHP regulation. The principles and advanced features of MPC and MHE

algorithms are presented and explored.

1.2.1 Model Predictive Control

MPC algorithms have been successfully implemented in many industries since the intro-
duction of MPC in the early 1970s. It has many advanced features over a traditional PID controller.
MPC predicts the future behavior of the process by evaluating the process model at the current time
step. The benefit of this prediction feature is that it can correct the process input variables in ad-
vance by looking at the future status of the process. While PID control has a similar feature, it is
employed in an indirect manner that does not involve the process model in the online implemen-
tation. The MPC prediction refers the past movements of the input variables for prediction, and
updates the prediction error detected at the current step to the prediction. These make the MPC
prediction more robust under some degrees of model mismatch or unmeasured process distur-
bances. Additionally, MPC can manage multiple variables simultaneously, called Multiple Inputs
and Multiple Outputs (MIMO) control. MPC can naturally handle the MIMO control by setting
up the multiple terms in the Quadratic Programming (QP) objective function. Therefore, MPC
distributes the control burden into multiple process input variables that have a relationship to the
control objective. This MIMO control feature is difficult to equip using multiple Single Input and
Single Output (SISO) controllers, such as PID controllers, because complexity is added by the need
for additional calculation blocks to decouple the interactions between variables. Furthermore, pro-
cess optimization strategies can be embedded into the MPC by adding Linear Programming (LP)

terms in the objective function. This drives the process to a more beneficial state.
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Figure 1.5: Schematic illustration of receding horizon concept of MPC

1.2.2 Moving Horizon Estimation

As model-based control and optimization strategies receive more attention in many indus-
tries, the estimation of unknown or uncertain parameters is necessary to maximize the benefit of an
automated system. Estimators generally estimate the current state of the process when data is not
measurable or the sensors are not reliable, as is the case with real-time quality estimation in dis-
tillation columns when the on-line quality analyzers are not available. An estimator also estimates
the unmeasured variables or parameters in the model that is being used by MPC. As a result, the
control performance can be improved by increasing the accuracy of the MPC. There are many dif-
ferent types of estimation algorithms including MHE, the Extended Kalman Filter (EKF) and the
Unscented Kalman Filter (UKF) [13, 14]. Various types of estimators are reviewed and compared
in [15].

MHE is functionally similar to MPC and constitutes the most capable estimation algorithm
[16—18]. It calculates unknown parameters by solving the QP objective function which includes
primarily the model errors. The objective function of MHE includes the past measurements and

model results while the MPC projects the model and drives to a setpoint. In drilling automation
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research, estimation algorithms are tuned to detect certain events such as unexpected gas influx or
buildup of cuttings within particular sections of the annulus. Various types of Kalman filters have
previously been investigated for estimating the unknown parameters in drilling operations [19].
Previous research also uses a combination of EKF and MHE to estimate the density and gas influx
flow rate [20,21] using a squared error objective function to penalize deviation of the model values
from available measurements. Estimators for underbalanced drilling have also been designed using

MHE and UKEF [22,23].

Past Future
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Y,k — N +ilk) ° ° ° 8 ®
° L] o o
° ° ° o
PY o
Model output value o
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(o]
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| | | | | >
| i i | | >

k-N k-N+1 e k-3 k-2 k-1 k k+1

< Estimation Horizon, N >

Figure 1.6: Schematic illustration of receding horizon concept of MHE

1.3 Research Objective

Many industries have successfully adopted linear MPC [24,25]. However, these processes
have either semi-batch characteristics or nonlinear behavior, thereby limiting the potential appli-
cation of linear MPC. The drilling process is inherently nonlinear because the operations include
a wide range of dynamic input to output relationships that are not linear. In addition, because the
operation stops and starts periodically, the portion of time that the process goes through a transient
state is not insignificant. Several studies show that the performance of a linear MPC controller for
the drilling process is good in a limited operation regime [26—28]. However, linear MPC also ex-

hibits.severe limitations-whenanoving to another operation regime outside the range of the training
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data [26-28]. There are another group of studies that attempt to apply a nonlinear MPC algo-
rithm for drilling [21,29-31]. These studies develop and employ a low-order model to improve
the computational speed of NMPC. Several low-order model equations for drilling automation are
described in previous research [6,32-37]. A low-order model is more feasible to use for real-time
control purposes because it requires less computational time than high-fidelity simulators by sim-
plifying the dynamics of the drilling process. The accuracy of a low-order model is verified by

comparison with data from a physical drilling test rig [4]. The verification data includes pressure

hydraulics, ROP, friction factor, drill string dynamics, and WOB dynamics.

The objective of this study is to develop an automation system for MPD. MPD has the
potential to benefit from MPC and MHE algorithm that has already been proven in a number of
industries. The MPC and MHE in this study use the different types of models. One is a Simplified
Flow Model (SFM), developed by SINTEEF, and the other is a Hammerstein-Wiener model. SFM
is a simplified version of SINTEF’s High-fidelity Flow Model (HFM), created by simplifying or
removing complex dynamics that have a limited effect on the drilling hydraulics calculations. It
retains the same accuracy of the HFM for hydraulics calculation which must be more precise than
the existing low-order model and have improved computational speed and stability than HFM.
The Hammerstein-Wiener model is an empirical type of nonlinear model that contains the linear
dynamics blocks and static nonlinear blocks separately.

Two different high-fidelity drilling simulators are used for verifying the p erformance of
the MPC and MHE. The first is WeMod, developed by the International Research Institute of
Stavanger (IRIS), and the second is the HFM developed by SINTEF. These high-fidelity drilling
simulators use a dynamic model that describes a one-dimensional, two-phase flow in pipelines with
nonlinear partial differential equations (PDEs). The PDEs describe mass, momentum, and energy
balances for each phase. The momentum equations combine to form a drift-flux formulation.
Models of friction, velocity, temperature, gelling, and flow regime simulate the virtual well system
[38]. For solving the nonlinear optimization problems, APMonitor optimization suite [39] and
Sequential Least Squares Programming (SLSQP) module in a Python SciPy function are used.
This automation system seeks to maximize the rate of penetration (ROP) and regulate the BHP.
This study verifies the performance of nonlinear model predictive control (NMPC) for both normal

drilling and drilling during abnormal conditions.
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1.4 Outline

The dissertation is outlined in three successive chapters as follows:

Chapter 2 presents a new simplified flow model (SFM) for BHP regulation in MPD oper-
ations. The SFM is embedded into model based control and estimation algorithms that use MPC
and MHE, respectively. BHP control performance is evaluated in scenarios of drilling, pipe con-
nection, and mud density displacement and the efficacy of the SFM is tested in control schemes
applicable to both WDP and mud pulsing. A trusted high-fidelity flow model (HFM) is used to
simulate well conditions that are used to evaluate performance of the controller using the SFM.

Chapter 3 demonstrates a new Hammerstein-Wiener NMPC for BHP regulation in drilling.
Hammerstein-Wiener models employ input and output nonlinear static blocks before and after
linear dynamics blocks and thereby simplify the controller design. The control performance is
evaluated in scenarios of drilling, pipe connection, and kick attenuation. A physics-based drilling
simulator, WeMod, is used for model identification and control performance evaluation.

Chapter 4 is a brief summary of the conclusions and future work.

1.5 Contributions
* Developed MPC and MHE for the MPD process using newly developed SFM in Chapter 2.

* Calibrated frictional pressure loss in the drill string and annulus using SFM MHE in Chapter
2.

* Evaluated the BHP control performance MPC and MHE using an SFM for semi-closed loop

and full-closed loop configurations in Chapter 2.

* Applied Hammerstein-Wiener empirical non-linear model for MPC for BHP control in Chap-

ter 3.

* Evaluated the BHP control performance of Hammerstein-Wiener MPC for the MPD opera-
tion with WDP system in Chapter 3.

* Performed case studies for typical normal and abnormal operation scenarios in drilling op-

eration such as drilling, pipe connection, kick attenuation, and mud density displacement in

Chapters 2 and 3.
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Investigated model mismatch between SFM and HFM in Chapter 2.

Investigated non-linearities in drilling operation in Chapter 3.

Compared control performance between conventional PID and Hammerstein-Wiener MPC

in Chapter 3.

Developed the MPC variable switching algorithm for the kick attenuation control in Chapter
3.

1.6 Publications

The main contributions to this thesis were presented in the following conference papers:

* Park, J., Price, C., Pixton, D.S., Hedengren, J. D., Aghito, M., Nybg, R., & Bjgrkevoll, K.
(2018). Model Predictive Control and Estimation of Managed Pressure Drilling. Control

Engineering Practice. (Submitted)

* Park, J., Webber, T., Shishavan, R. A., & Hedengren, J. D. (2017). Improved Bottomhole
Pressure Control with Wired Drillpipe and Physics-Based Models. In SPE/IADC Drilling
Conference and Exhibition. Society of Petroleum Engineers. doi:10.2118/184610-MS
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CHAPTER 2. SIMPLIFIED FLOW MODEL VALIDATION FOR BOTTOMHOLE
PRESSURE REGULATION OF MANAGED PRESSURE DRILLING

2.1 Introduction

Drilling automation has the potential to improve operational efficiency, safety, and en-
vironmental impact of well manufacturing. Implementation of drilling automation leads to two
important considerations, that of the drill string dynamics, and that of the system hydraulics. The
primary objective of automation regarding the drill string dynamics is to reduce the vibrations of
the drill string and maximize the energy transferred for cutting rock. Minimization of drill string
vibrations preserves that energy and yields more efficient operation. Regarding system hydraulics,
the primary objective of automation is to control the bottomhole pressure (BHP). Such control may
be accomplished by using drilling fluid to maintain a specified BHP. BHP regulation is crucial be-
cause drilling rate of penetration (ROP) improves with a lower BHP that approaches the lower pore
pressure limit [40]. Varying methods, challenges, and benefits of BHP control are addressed in
this paper. By managing the pressure within the drilling window, mud loss to the formation can be
reduced and lower the risk of gas influx from the formation. With fine control for BHP, wells with
narrow pressure margins become more readily accessible. Although these two parts of drilling au-
tomation research usually are evolving separately, they should be integrated into a single research
topic in the future when their technologies are mature. Asgharzadeh et al. [20] investigated ROP
optimization combined with BHP control considering the mutual effects of the drill string dynam-
ics and hydraulics. MPC is an advanced control algorithm that has been successfully implemented
in a variety of industries [24]. Many attempts have been made to successfully apply MPC to man-
aged pressure drilling (MPD) operation. However, there are several inherent challenges in drilling
operation that inhibit use of full closed-loop control. The most apparent obstacle is the lack of
a real-time downhole pressure measurement. Measurement while drilling (MWD) is a common

way to collect BHP measurements. However, low bandwidth of the MWD is not sufficient for a
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real-time feedback signal, and the pressure wave that serves as the medium for signal transmission
generates considerable delay [37]. The delay time varies with the well depth and is vulnerable
to pressure fluctuations caused by the choke manifold. A modern high-speed telemetry system,
WDP, is the only current physical solution that removes these data transmission issues [41]. De-
spite increasing interest in WDP, most wells continue to use MWD for lower costs and proven field
experience compared to WDP. A second challenge faced by drilling automation is the difficulty of
modeling the physical characteristics of the drilling process and employing real-time predictions in
the control system. High-fidelity flow models (HFM) have been commonly used for understanding
operation conditions and decision making. However, the complexity and a large number of input
variables in HFM make them unsuitable for use in a real-time control system. Thus, many MPD
automation research studies have attempted to employ reduced order models which capture the
primary dynamics of the drilling process [28,32,33,37]. However, the inevitably compromised ac-
curacy of the simplified models shows a discrepancy between actual operation and model results.
This model mismatch becomes more prominent in transient periods caused by operational changes
than a steady state. Park et al. [42] applied Hammerstein-Wiener non-linear empirical model and
Eaton et al. (2017) [8] developed a model switching control method to improve the BHP control
performance under the existing obstacles. Landet et al. (2013) [43] investigated the MPC automa-
tion for offshore rig having the heave-induced pressure fluctuations. In this study, newly developed
SEM (SINTEF) is used for BHP pressure control and compare the results between non-WDP rig
and WDP rig.

2.2 Simplified Flow Model

A SFM for real-time hydraulic calculations in drilling operations was recently proposed
in [44]. The SFM is based on the background technology provided by a HFM which has been em-
ployed in many applications, including choke control in several successful MPD operations where
accurate pressure control was achieved [24,37,41]. The calculations are based on discretization of
the well volume and a numerical solver for the mass and momentum conservation equations the
govern the physics of the well. One possible limitation when using advanced high-fidelity models
in drilling automation is that these models are comprehensive, require to be configured, monitored

and.tuned.by.an.expertsand.it.is hard to eliminate fully the risk of running into numerical insta-
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Mismatch [bar]

Figure 2.1: Difference between steady state BHP output from HFM and SFM to identify model
mismatch at varying conditions

bilities. This motivated the development of the SFM, which is significantly simpler, faster, and
more robust than the HFM, but retains much of the accuracy of the HFM. Figure 2.1 shows the
model mismatch between HFM and SFM in varying conditions. The SFM is a dynamic model, as
the HFM. Mass transport calculations include dynamic effects in that e.g. an increase in pressure
causes a delay in flow out due to compression of the fluid in the well. However, accuracy during the
transient phases is relaxed somewhat in the simplified model to allow calculations to be done with
a minimum of numerical iterations. Another simplification is to keep temperature profile fixed,
rather than doing the dynamic temperature calculation that many high-fidelity models can do. This
simplification is acceptable because changes in temperature profile normally goes much slower
than rapid changes in the pressure profile due to operational changes, and therefore a good tuning
algorithm can be used to take care of the slowly drifting consequences of temperature changes.
Some additional simplifications are made in sub-models to reduce need for numerical iterations,

for example the rheology model. The HFM fits rheology data to a Herschel Bulkley model, while
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the SFM utilize the linear Bingham model. Still calculations are relatively sophisticated, and in-
clude for example pressure and temperature dependent fluid properties, with density either from
published correlations or from input tables of laboratory data. The SFM is therefore much faster
and robust than the HFM, and at the same time more accurate than existing lower order model
therefore it is recommended for integration in advanced control system methods such as MPC and

MHE.

2.3 System Configurations

Control system architecture for MPD automation varies according to the availability of
BHP data. Several potential architectures are portrayed in Figures 2.2, 2.3 and 2.4. They display
block diagrams of the signal chains for each architecture. Note that dashed lines in these figures
represent the input signals of the controller that are computed from hydraulic models. If the BHP
measurements are available for the control system, a solid line represents the path of measured data.
Figure 2.2 shows an open loop configuration wherein the control system relies on the calculated
BHP of the SFM and no actual bottomhole data is fed into the control system. This is the most
passive method of automating the system, where automatic control decisions are not directly fed
into the rig equipment controllers, but are initially screened by operators in an open-loop manual

mode. This therefore constitutes an advisory system.

Setpoint
l pchoke (MV)’
Surface measurements Mudflow(MY)
—>  Rig ¥ HFM
No bottomhole measurements

By evaluating
different boundary
conditions

Figure 2.2: Open loop control configuration - Advisory system
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Figure 2.3 represents a semi-closed loop configuration, which is a common configuration in
MPD automation research especially when WDP is not available [45—47]. Instead of fully relying
on a model calculation (e.g., Figure 2.2), methods are introduced in this configuration to estimate
the BHP from surface measurements. Moving horizon estimation is the estimation method pre-
sented in this paper but is only one of a number of useful estimation methods. In this scenario the
moving horizon estimator (MHE) acts as a soft sensor that infers the BHP by processing the sur-
face measurements through the SFM. Unlike the open loop configuration of Figure 2.2, the MHE
minimizes model mismatch by dynamic optimization of certain unmeasured drilling parameters,
such as mud density and friction factor. Furthermore, the model may be occasionally updated or

tuned by periodic downhole measurements (e.g., via mud pulse telemetry) to increase accuracy.

Surface Setpoint
measurements,
DPpisStm (CV), l
Surface Density_sfm, Pehoke MV),
measurements MHE Friction_sfm N MPC Mudflow (MV)
¥ Rig [———H o ---——--
8 (SFM) (SFM)
Minimize(spp — spp_sfm)?2 Minimize(setpoint — p,;, sfm)?
by adjusting by adjusting p.; ..., Mudflow

Density_sfm, Friction_sfm

Figure 2.3: Semi-Closed loop control configuration - Moving horizon estimator

Finally, if real-time BHP measurements are available, a full-closed loop configuration may
be employed. This type of system is presented in Figure 2.4. Note that, even though bottom hole
measurements are available in real time, an estimator is still present in this configuration, since it is
needed to estimate unmeasured drilling parameters such as mud density or friction factor. Because
actual BHP measurements are used in the MHE calculation, the resulting estimated quantities are
more reliable than those of the semi-closed loop case in Figure 2.3. The SFM is continuously
updated with the estimated parameters to increase the accuracy and reliability of the controller. We
note here that, while various telemetry systems can supply real time BHP measurements, varying

quality.-and.quantity.-of real-time data are available from these different schemes. While mud pulse
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telemetry can provide real-time data, this data is subject to transmission delays on the order of
at least a few seconds and delivery of the data may be subject to deprioritization depending on
what other data is occupying the limited transmission channel. Of course, mud pulse telemetry
ceases when mud pumps are shut off. These factors introduce uncertainty into the control process
and place more reliance on model-based estimates. High-speed telemetry provided by wired drill

pipe overcomes these limitations and provides more timely and abundant data for full closed loop

control.

Puie (CV), Density,
Surface measurements MHE Friction

" o -1

(SFM) I

Minimize(p,;, — p;;,_sfm)? : Setpoint
by adjusting |
Density_sfm, Friction_sfm n
4 choke (MV)’
N Ri | MPC Mudflow (MV)
1
; P (V) (SFM)

Surface measurements L. ]
Minimize(setpoint — p,;,_sfm)?

by adjusting
D enokes Mudflow

Figure 2.4: Full-Closed loop control configuration - Moving horizon estimator

2.4 Model Based Control and Estimation

There are several steps in the MPC calculation. First, it predicts the future behavior of
the process by evaluating the process model (in this case the SFM) at the current time step. The
benefit of this prediction feature is that it can correct the process input variables in advance by
looking at the future status of the process. Second, it determines the sum of squared error between
the setpoint trajectory and model prediction values throughout the prediction horizon. Third, it
performs the control calculation by solving the dynamic optimization problem to find the optimal
sequences of process inputs (MVs). The first value of the MV sequence is applied to the process

and repeats the entire cycle for every time step.
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The MHE algorithm shares this main concept with MPC. It calculates the unknown pa-
rameters in the model by solving the Quadratic Programming (QP) objective function that mainly
includes the model errors. The objective function of MHE refers the past data of measurements
and model results while the MPC refers the future model prediction and setpoint. The QP objective
functions used in this study are the squared error objective. The objective functions associated with
MHE and MPC are shown in Equations (2.1) and (2.6), and the parameter descriptions are shown

in Table 2.2 and 2.1, respectively.

N

rgliDnCD = Y (Op stk = Ympensite) W Fp e nesite = Ymen+ife) + (APLNHMVAPk—NH\k)]
i=1

@.1)

where,Apy_n yijk = Pk—N-+tilk — Pk—N+i—1[k (2.2)
sit. 0= f(xX,x,y,p,d,u) (2.3)
0=g(x,y,p,d,u) (2.4)

0 < h(x,y,p,d,u) (2.5)

Table 2.1: Summary of parameters used in QP objective function for MHE

Parameter | Description

o Objective function
N Horizon length for MHE
k Current time step

YpsYm Measured CV value (y,) and model result of CV value (y;,)
V.W Weighting Matrices for CVs and parameters
u,x,p,d | Model inputs(u), states(x), parameters(p), and disturbance(d)
f,8,h Model equation (f), output function (g), and inequality constraints (/)
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N M

min® = Y (O = 30" QFrie — Z (A, RAw i) (2.6)
i=1 =1

where, Auy | jir = Upy ji 1k — Uk jlk 2.7)

sit. 0= f(xX,x,y,p,d,u) (2.8)

0=g(x,y,p,d,u) (2.9)

0 < h(x,y,p,d,u) (2.10)

%% Fy=sp 2.11)

Table 2.2: Summary of parameters used in QP objective function for MPC

Parameter | Description

P Objective function
N,M Prediction horizon(N), Control horizon(M)
k Current time step
y Predicted CV value of dynamic model
Vt Desired set point trajectory in the prediction horizon

O,R Weighting Matrices for CVs and MVs
sp Set point in the prediction horizon
u,x,p,d | Model inputs(u), states(x), parameters(p), and disturbance(d)
f,8,h Model equation (f), output function (g), and inequality constraints (/)
Te Time constant of desired controlled variable response

2.5 Case Studies

Well conditions are simulated in this study by a high-fidelity flow model that has been
shown through field experience to accurately represent field conditions in the tested regime. This
study shows that tight pressure control can be maintained during the tested procedures when the
controller and estimator are based on a nonlinear physics-based simplified model of the process.
While this study is specific to the geometrical and physical constraints of the managed pressure

drilling environment, the approach employed is extensible to applications in other industries where
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a similarly simplified model may be used in conjunction with moving horizon estimation and model
predictive control.

Well simulation studies have been used to assess the behavior of a control system employ-
ing the new SFM. In these studies, the SFM provides simulation data to MPC and MHE routines,
and thereby helps assess the impact of adjusting choke valve pressure and drilling fluid flow on the
controllers ability to keep BHP within established target limits. The field-tested HFM mentioned
previously simulated well conditions in lieu of field data. A vertical well profile was selected for
all simulations; other relevant well model parameters are presented in Table 2.3.

Both semi-closed loop and full-closed loop control schemes were tested under the follow-

ing four scenarios:
1. a model calibration (to provide a basis for subsequent scenarios),

2. BHP control and simultaneous parameter estimation under normal drilling conditions (flow,

drillstring rotation, formation penetration),
3. a pipe connection including cessation of flow and rotation, and
4. mud density displacement over a fixed period of time.

Scenario 1 simply ensures convergence of the SFM results with measured well conditions. The
remaining scenarios provide different challenges to a controller that are expected in a managed
pressure drilling environment.

In all case study scenarios, the two control system configurations are investigated and com-
pared. Semi-closed loop configuration emulates the case where the BHP measurements are not
reliable. Thus, the stand pipe pressure (SPP) measured from the surface is used for BHP estima-
tion. On the other hand, the full-closed loop configuration simulates a rig where reliable BHP
measurements can be used for MHE and MPC. The detailed descriptions of the scenarios are pre-

sented in following subsections.
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Table 2.3: Wellbore Conditions I

Parameter Value (AES) | Value (SI)
Well depth 12,349 ft 3,764 m
Riser inner diameter 9.66 in 0.25m
Water depth 731.6 ft 223 m
Casing inner diameter 8.51n 0.22m
Casing depth 12,349 ft 3,764 m
Drill string average outer diameter | 4.5” 0.12 m
Pore pressure 1.33 ECD 1.33 ECD
Fracture pressure 1.927 ECD 1.927 ECD
Initial mud density 1.49 s.g. 1.49 s.g.
Mud temperature 122 F 50 °C

2.5.1 Model Calibration

Using MHE in model calibration leads to the minimization of mismatch between the sim-
plified model and the actual conditions (represented in this case by the HFM). When assuming mud
pulse communication between the surface and the bit downhole the sparsity and irregularity of data
must be addressed. The MHE relies not on the actual bit pressure, but on the measured standpipe
pressure as this is a measurement that can be reliably collected for estimation. This works under
the assumption that changes in the bit pressure and changes in the standpipe pressure will occur
nearly concurrently and that they are correlated. However, while the two measurements do move
concurrently, the relationship is not constant due to frictional pressure loss at various flows. There-
fore, when the standpipe pressure is used for estimation over large ranges of choke pressure and
mud flow, the mismatch between the actual BHP and the SFM BHP increases. Minimization of
the mismatch is accomplished by model calibration as downhole measurements become available.
If WDP is used, the estimation would rely directly on the BHP measurements as they compare the
simulated BHP measurements. Thus, periodic calibration would not be necessary as the model

would be continuously calibrated because of the direct use of BHP measurements.
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2.5.2 Normal Drilling

As previously stated, BHP control provides the ability to drill in narrow pressure wells in
addition to optimizing ROP. In a normal drilling scenario both manipulated variables (choke pres-
sure and drilling fluid flow) are available for manipulation by the controller. Assuming the friction
factors are properly calibrated in the model by the model calibration procedure, the MPC algo-
rithm minimizes the difference between the set point and the calculated BHP across the prediction
horizon and accurately drives the BHP to the set point while submitting to provided manipulated
variable constraints, such as the maximum rate of opening or closing for the choke valve or the

allowable ramp rate for the mud pump.

2.5.3 Pipe Connection

During a pipe connection procedure, the normal control processes must be modified to
accommodate the addition of more pipe. As the drill bit deepens during the drilling process ad-
ditional pipe lengths are periodically added to the drill string. The addition of pipe is typically
required every one to three hours [46] but is ultimately dependent on the pipe stand length and the
ROP. During this pipe connection it is necessary to ramp the drilling fluid flow rate to zero, attach
the new pipe length, and then bring the flow rate back up to normal conditions again. Thus, the
mud flow rate changes from an optimized output of the controller to a set input that steadily ramps
down to zero. As the mud flow rate is brought to zero the controller then relies solely on the choke
pressure until the pipe connection is complete. However, because pipe connection is a planned
event and the ramp rate is known in advance, the ramp rate can be passed into the MPC so that
the changing mud flow can be considered in the BHP predictions of the MPC and improve control

accuracy during the pipe connection period.

2.5.4 Mud Density Displacement

At the end of the MPD operation it is desired to shut off the choke valve. To reduce reliance
on the choke pressure in the control scheme higher density mud is fed to the bottom hole. This
higher density mud essentially serves as a less accurate substitute for the choke valve because it

exerts higher pressure on the open hole so that the choke manifold can be released and disengaged
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from BHP management. In this scenario, the mud density changes over a period, thus allowing for
a slow opening of the choke valve. As the density changes, the controller accounts for this change
in system dynamics as it manages the BHP. This scenario differs from the pipe connection scenario
in that the controller adjusts to rely solely on the drilling fluid flow, whereas for pipe connection
the drilling fluid flow must be ramped down. Throughout the period of density transition and choke
valve ramp up, the estimator is relied upon to provide accurate friction factors that keep the model

accurate despite the changing conditions.

2.6 Results and Discussions

This section presents the results of model calibration, normal drilling, pipe connection,
and mud density displacement case studies. The control performances of semi-closed loop and

full-closed loop configurations are compared for the latter three scenarios.

2.6.1 Model Calibration

Figure 2.5 presents the results of MHE to calibrate the annulus and drill string friction
factors in normal drilling conditions. These results are observed using a prediction horizon of
25 seconds. The estimator first estimates the annulus friction factor (f;) at 150 seconds which
aligns the calculated BHP with the actual BHP as presented by the HFM simulation. At 400
seconds the estimator calculates the drill string friction factor (f;), which causes the calculated
and actual SPP values to converge. Once both friction factors are calculated, the model is used
effectively for control. From this initial calibration, the friction factors are continuously adjusted
by the estimator, but such adjustments are minor, as seen in Figure 2.6 and Figure 2.7, which
present normal drilling scenarios. Model calibration is useful for both full-closed loop and semi-
closed loop control configurations. A full-closed loop control calibration essentially occurs at every
time step when the estimator algorithm is run. In the semi-closed loop configuration, however,
calibration is performed as often as bottomhole data becomes available. As data is received on the

surface it is used to recalibrate the simplified model as required.
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Figure 2.5: Model calibration using MHE

2.6.2 Normal Drilling

Figure 2.6 and Figure 2.7 display the results of normal drilling case study for the semi-
closed loop and full-closed loop configurations, respectively. In the semi-closed loop case the
BHP is controlled by using the standpipe pressure in the objective function of the controller. It is
assumed that mud pulsing is used to communicate bottom hole conditions to the surface. This is
compared to the full-closed loop conditions where WDP is assumed and BHP measurements are

regular and frequent. As explained with Figure 1.6, the model is first calibrated. This calibration
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Figure 2.6: Control performance for normal drilling scenario - Semi-closed loop

of the friction factors is observed in Figure 2.6 and Figure 2.7 between 0 and 200 seconds. The
BHP control is more effective in a full-closed loop scenario as the controller is able to use actual
bottomhole conditions to inform the control moves. However, it is of interest that the improvement

in control performance observed in the full-closed loop case is minor and that the full-closed loop
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Figure 2.7: Control performance for normal drilling scenario - Full-closed loop

scenario brought the BHP about 0.5 bar closer to the setpoint as compared to the semi-closed
loop scenario. While this is not an exhaustive survey across a multitude of well conditions, it is

indicative of the effectiveness of using a semi-closed loop system that employs a SFM.
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The differences in a semi-closed loop system and a full-closed loop system are a result of
the data the estimator uses to determine the annulus and drill string friction factors. As is previously
addressed, the semi-closed loop system relies on standpipe pressure, and the objective function
adjusts the friction factors to achieve convergence of the standpipe pressures of the SFM and HFM.
This convergence is observed in the standpipe results of Figure 2.6. There is a slight offset observed
in the BHP of Figure 2.6 due to the use of the standpipe pressure in the estimator objective function.
The opposite effect is seen in the full-closed loop scenario presented in Figure 2.7. The BHP
is maintained closer to the set point because the estimator is using the BHP data in its objective
function. The SPP is observed to diverge more significantly in the full-closed loop case because the
estimator is no longer relying primarily on the standpipe pressure to estimate the friction factors.
The variations in friction factors between the two cases can be observed in Figure 2.6 and 2.7.
They are similar for the most part, but the dynamic portions vary significantly and as the friction
factors steady out between 900 and 1200 seconds the full-closed loop scheme estimates an annulus
friction factor slightly higher than that of the semi-closed loop and a drill string friction factor
slightly lower than that of the semi-closed loop scenario. Ultimately, the differences between the
two scenarios are minimal and demonstrate the effectiveness of the estimator and controller using
a SFM in both full and semi-closed loop control schemes. Ultimately very similar control moves
were made (as seen in Figs. Figure 2.6 and 2.7), and the resulting BHP measurements differed by

less than one bar.

2.6.3 Pipe Connection

The pipe connection procedure results are shown in Figure 2.8 and 2.9. During the pipe
connection procedure, mud flowrate moves through a wider operational range from the range
of normal drilling to the zero flowrate which produces greater model mismatch than the normal
drilling scenario. According to the settings and models of this study, the primary factor of the
model mismatch is the mud flowrate because the friction factor of the drill string and annulus is
only important when the mud is flowing. At the beginning of the case study, the model calibra-
tion proceeds until the MPC control starts at 400 seconds. From 600 seconds, mud flowrate starts
ramping down and stays at the zero flowrate for about 300 seconds until the new segment of a

drill string.is-addeds-The.mud-flow rate is then ramped back up to the normal drilling range (1000
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Figure 2.8: Control performance for pipe connection scenario - Semi-closed loop

[ /min). As the mud flow ramps down, the BHP is maintained by compensatory moves in the choke
pressure. Because it is a planned change in the mud flow, the ramp down is communicated to the
predictive controller and the controller designs effective moves to maintain a steady bit pressure
through the pipe connection procedure. MHE continuously adjusts the annulus and drill string
friction factor to match the BHP or SPP, depending on the control mode. Figure 2.8 and 2.9 show

the results of the semi-closed loop and full-closed loop control mode respectively. Although the

30

www.manharaa.com




316
-
314 A
S cee— Ao
a 312 -== HFM
z 310 —— SFM
— sp
308 . . . . :
0 500 1000 1500 2000 2500 3000
301 : . : . .
0 500 1000 1500 2000 2500 3000
1.4
s 1.2
1.04 — SFM
0.8 : . . . :
0 500 1000 1500 2000 2500 3000
o 1.54
—— SFM
1.0
40 0 500 1000 1500 2000 2500 3000
-
©
Q0o
~ 30 4
g
2
Q
a’ 20 1
10002 500 1000 1500 2000 2500 3000
€
= 500
Q.
(o2
0 : . . : :
0 500 1000 1500 2000 2500 3000

Time (s)

Figure 2.9: Control performance for pipe connection scenario - Full-closed loop

mud flowrate is varied greatly, both control modes show acceptable control performance maintain-
ing the BHP within 4 1 bar deviation. However, the semi-closed loop mode shows slightly worse
control performance than the full-closed loop mode after mud flowrate ramps up completely be-
cause the annulus friction factor (f;) stops adjusting at 2300 seconds It continuously adjusts only

in full-closed loop mode. The objective of MHE to minimize model and process discrepancies is
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satisfied for the semi-closed loop mode at 2300 seconds by eliminating the SPP difference between

the HFM and SFM. However, the BHP difference still exists.

2.6.4 Mud Density Displacement

The results in Figure 2.10 and 2.11 demonstrate the impact of changes in drilling fluid
density on the estimated friction factor and the resultant changes in the choke pressure and drilling
fluid flow. The differences between a semi-closed and full-closed loop mud density displacement
scenario are also displayed. The drilling fluid density change is observed at 0.5 hours as the
density is stepped up from 1.5 S.G. to 1.6 S.G. The choke valve is subsequently ramped down
over a 2.5 hour period between 0.5 and 3 hours. It is observed that because of the aforementioned
system changes the drilling fluid flow slowly decreases to further counteract the increase in density.
This indicates that shutting down the choke valve does not provide enough pressure relief and
the controller selectively relies on the drilling fluid flow to maintain control. Additionally, the
standpipe pressure drops off substantially but the BHP stays high as a result of the higher density
drilling fluid. In the full-closed loop configuration, the simplified model matches the simulated
real world conditions more closely, which has the result of maintaining the quality of BHP control

provided by the MPC controller.

2.7 Conclusions

This study investigates the BHP control performance of an MPC controller that uses a sim-
plified, physics-based flow model. Full-closed and semi-closed loop control schemes are presented
and in each scheme the BHP is shown to be successfully controlled in conditions of normal drilling,
pipe connection, and mud density displacement. The results demonstrate tight controller perfor-
mance that successfully maintains the BHP to within one bar of the set point in each scenario.
Additionally, MHE calibrates the model and effectively estimates the drill string and annulus fric-
tion factors. The effectiveness of the controller is predicated on the quality of the estimator, and
the present study demonstrates that tight BHP control is achieved in conjunction with estimation

of the unknown model parameters, fa and fd.
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Figure 2.10: Control performance for density displacement scenario - Semi-closed loop

In normal drilling scenarios, the BHP is controlled and regulated to a desired setpoint.

Control is improved with a full-closed control scheme, but the advantages over a semi-closed

loop are marginal. Similarly, when controlling BHP during pipe connection it is more effective to
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Figure 2.11: Control performance for density displacement scenario - Full-closed loop

use a full-closed loop, but semi-closed loop is also a viable option with feedforward information.
Inclusion of feed forward control in the MPC algorithm enables effective BHP control in this
scenario. Model mismatch is introduced by pipe connections because of loss of measurements, and

model recalibration should be performed after such a procedure. In mud density displacement the
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semi-closed loop again developed some mismatch that is best remedied by a model recalibration,
but mismatch is minimal and the recalibration is not critical immediately following a period of
mud density displacement. The full-closed scheme again proves more effective than the semi-
closed scheme for mud density displacement.

The MPC controller handles the several scenarios successfully and the results indicate that
a simplified model can be used to achieve BHP control. Such a model would be effective on most
oil rigs currently in operation as the data shows that the differences between full-closed loop and
semi-closed control schemes is minimal. The results of this study solidify the need of a SFM in
MPD. A SFM can be a useful tool for controlling systems using mud pulsing or WDP, and such
control comes at a smaller computational cost than use of a HFM and offers the benefit of tight
control that improves drilling quality as well as the opportunity to drill more complex wells that

have narrow pressure requirements.
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CHAPTER 3. BOTTOM HOLE PRESSURE REGULATION USING HAMMERSTEIN-
WIENER NONLINEAR MODEL PREDICTIVE CONTROL FOR MANAGED PRESSURE
DRILLING

3.1 Introduction

The recent downturn of the crude oil market motivates improvements in cost effective oil
and gas well manufacturing and production. Automation is one possible solution to minimize costs
and well completion time. Automation systems can improve safety and convenience and enable
optimization strategies. The oil well drilling industry is transitioning to automation systems as
downhole sensors, communication, and control technology improves. Thanks to modern telemetry
and integration of control systems in new drilling rig designs, several opportunities are opened
for Managed Pressure Drilling (MPD) automation and optimization strategies. One of these tech-
nologies is Model Predictive Control (MPC). MPC has successfully been applied in many indus-
tries [24]. MPC vendors report that over 4,600 MPC applications were in use by the early 2000s
with most applications in the downstream industry. Several features make the technology attractive
to the drilling industry. First, MPC has a prediction feature that employs a process model, either
determined from data or from physics-based simulators. This feature predicts future constraint
violations and anticipates behavior of the process in advance. Processes that have long time con-
stants and time delay or inverse response can be effectively managed. Second, MPC deals with
multiple variables at a time, considering the coupling effect between variables. It is able to control
multi-input and multi-output (MIMO) systems with single-input and single-output control (SISO)
systems are typically implemented with less advanced methods such as Proportional, Integral, and
Derivative (PID) control. Third, MPC accommodates nonlinear processes by using Nonlinear Pro-
gramming Solvers (NLP) and efficient methods to discretize the control and prediction horizon.
Fourth, MPC has a range feature that specifies an acceptable control range instead of always driv-

ing to a desired target set point. This gives more freedom to operate within an upper and lower
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range or to drive to a limit, especially when the system has more than one controlled variable (CV).
The range control feature can reduce conflicted situations when set points for individual CVs are
simultaneously unachievable. Fifth, MPC allows optimization strategies to push the operation to
a more beneficial point, while keeping within an acceptable range. All of these advantages are
compared to the well-known PID controller that has the advantage of simple implementation and
tuning.

There are the several characteristics of MPD that are improved with MPC technology. First,
it is critical to regulate the BHP within a pressure window during MPD operations. Low pressures
lead to unexpected gas influx (kick) and high pressures lead to formation damage or lost drilling
fluid (mud) circulation. Lower pressure has the effect of increasing ROP because it reduces the
chip hold-down effect [40]. Related studies demonstrate this benefit by using simplified pressure
hydraulics and an ROP model [20,21]. The set range control and optimization functionality of
MPC are important for these multivariate operation criteria. Second, in comparison to conven-
tional drilling operation, MPD has more manipulated variables (MVs) such as choke valve, main
mud pump and backpressure pump that move in coordination to maintain a BHP. All three MV
are adjusted simultaneously by exploiting the multivariate capabilities of MPC. Lastly, the inherent
nonlinear and saccadic nature of drilling is a challenge for the application of automation. Figure 3.1
shows the nonlinearity of the drilling operation between the main variables. The simulated data is
obtained from a detailed physics-based drilling simulator, WeMod. A full nonlinear model can be
applied to control MPD automation but there are different types of nonlinear models that have been
demonstrated. Many previous research studies in drilling automation have established reduced or-
der models by capturing the main dynamics of the drilling process [28,32,33,37]. Although using
simplified low order models reduces the computational time significantly, solving the numerical
optimization problem in the MPC algorithm with nonlinear equations is still computationally de-
manding for real-time control purposes. Moreover, those models use several variables that are not
measured and must be estimated. This estimation step adds an additional layer of complexity and
computational burden. In contrast with a first principles model, an empirical step response model
such as those used in linear Model Predictive Control (LMPC) are widely used in many indus-
tries. However, these linear models are not sufficient to capture the nonlinear nature of drilling.

Hammerstein-Wiener models are the most widely implemented method of empirical nonlinear
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models in industry [48—53]. There are rich sources of the Hammerstein-Wiener model identifica-
tion research [54-56]. The Hammerstein-Wiener models employ input and output static nonlinear
blocks before and after the linear dynamic blocks. Because the nonlinear portions of the model
are not included in the MPC calculation, the computational burden is significantly reduced. This
model structure assumes that the time constant of the process does not vary significantly while the
static gain varies greater at different operation points. Thus, this type of nonlinear model performs
better for the processes that have a relatively short time constant value and smaller time constant
variation throughout the extended operation range. For the processes that have an extensive time
constant variation or for the combined control and scheduling system, the time constant variation
should be managed by the model structure to maintain the consistent control performance [57].
This study demonstrates a Hammerstein-Wiener based NMPC for BHP regulation in drilling. The
control performance of the Hammerstein-Wiener based NMPC is compared to the ubiquitous PID
controller in various scenarios that frequently occur in drilling operations, such as a pipe connec-

tion procedure and with unexpected gas influx.

3.2 Hammerstein-Wiener Based Model Predictive Control

The structure of Hammerstein-Wiener NMPC for drilling is detailed in this section. The
Hammerstein-Wiener model is an extended form of LMPC. It uses the same algorithm as LMPC to
optimize the linear dynamic portion of the model. As such, Hammerstein-Wiener NMPC captures
the input and output nonlinearities with the computational robustness and simplicity of LMPC.
To add the nonlinear control elements to LMPC, the Hammerstein-Wiener model employs static
nonlinearity blocks that process the input and output values of the linear dynamic model block. The
static nonlinearity blocks are static functions that are separated from the quadratic programming
(QP) optimization problems in the MPC algorithm [58,59]. Therefore, it allows a gain-scheduling
concept for a nonlinear process without significantly increasing the computational complexity. As
shown in Figure 3.2, the linear dynamic model (G) is located in between the input and output static
nonlinearity blocks (F and H).

Various types of models can be used for the linear dynamic model. In this study, a state

space model is chosen over other types such as a Finite Impulse Response (FIR) model. Eqn. (3.1)
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Figure 3.2: Structure of the Hammerstein-Weiner Model

and Eqn. (3.4) represent the input and output nonlinearity blocks (F, H) respectively and both

Eqn. (3.2) and (3.3) describe the state space form of the linear dynamic model (G):
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w(t) =F(u(1)) 3.1

~L = AX() + Bw() (3.2)
z(t) = Cx(¢) (3.3)
y(r) = H(z(r)) (3.4)

where, the vector u(z) € R” and w(z) € R” are the input variables of the input nonlinearity
block and linear dynamic model block, respectively. The input value, u(¢), is the actual input value
from the process and is converted to an internal variable w(¢) by the input nonlinearity function F.
The vector x(¢) € R” represents the state variable of the state space model. The vectors z(t) € R/
and y(¢) € R/ are the output variables of the linear dynamic model and output nonlinearity block,
respectively. Similar to u and w, internal variable z(¢) is converted to an actual prediction variable
y(t) through the output nonlinearity block H. A, B and C denote the state, input, and output matrix
of the state space model. The function F and H in the nonlinearity blocks could be a nonlinear
relationship such as polynomial, power series, or piecewise linear function. In this study, we use
the piecewise linear function for nonlinearity blocks discussed in the case study section.

The Hammerstein-Wiener model is utilized in the MPC platform in two main steps: ‘Pre-
diction’ and ‘Optimization’. In the prediction step, a sequence of future moves of the CVs is
predicted by processing the set of past movements of the MVs through the process dynamics
model. Then, in the optimization step, a sequence of optimized future MVs movements is calcu-
lated by solving a QP optimization problem. The QP objective function is designed to minimize
the difference between the predicted value and desired trajectory of the CVs. The first MV move
of the sequence is implemented to modify the choke position and pump rates. The entire proce-
dure is repeated for every sampling time. The additional steps for the Hammerstein-Wiener model
are the processing of input and output values for the LMPC. This involves reverse processing the
actual CV targets or ranges through the inverse nonlinearity block before it goes into the MPC
block. Additionally, the internal MV output which is reverse transformed and applied to the pro-
cess. Note that the nonlinearity blocks are inverted for the control schematic. The structure of the

Hammerstein-Wiener.based MPC system is shown in Figure 3.3.
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Mathematical expressions of the Hammerstein-Wiener MPC are shown below. The upper
and lower bound of control input (spy;, sp;,) and control input itself (y) are transformed by in-
verse output nonlinearity function h~! shown in Eqn. (3.5), and (3.6). The control output (w) is

transformed by inverse input nonlinearity function f~! shown in Eqn. (3.7).

spii(t) = h Y (spui(2)) and  spj (1) = b (sppo (1)) (3.5)
) =h""((1)) (3.6)
u(t) = f'(w(t)) (3.7)

The QP objective function used in this study is the £;-norm type objective which has many
advantages especially for the multiple objective optimization [39]. The ¢;-norm objective function
with the parameters associated with Hammerstein-Wiener structure is shown in Eqns (3.8) - (3.15)

and Table 3.1.
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ng’:@ = QF (en) +0lo™ (e1p) + (zm) T c; + (W) ey + (Aw) cpyy (3.8)

sit. 0= f(x%,x,u,d) (3.9)
0=g(yx,x,u,d) (3.10)
a>h(x,u,d) > b 3.11)

% AX Yo = P (3.12)

w28yt = s, (3.13)
eni > (Ym = Yt,hi) (3.14)
elo > (Yr.jo — Ym) (3.15)

Table 3.1: Summary of parameters used in ¢;-norm objective function for H-W MPC

Parameter Description
SPhis SPlo> SPhi*, SP1o* | Actual and transformed (*) value of upper and lower bound
ht ol Inverse nonlinearity block function
[ Objective function
Zm Model output values (0, ...,Zm,n)T or predicted output values
w Inputs
X States
Zt.his 210 Desired trajectory dead-band
Oni, Oio Penalty outside trajectory dead-band or weighting factor
Cz,Cyy CAw Cost of z, w, and Aw, respectively
i Equation residuals
J Output function
k Inequality constraints
T, Time constant of desired controlled variable response
€l Slack variable below the trajectory dead-band
€ni Slack variable above the trajectory dead-band
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3.3 Case Study

In this section, the wellbore condition and scenarios are described. It simulates a vertical
geometry well with the MPD rig. The MPD rig has a choke valve, a main mud pump, and a
back pressure pump as maneuvers for the BHP regulation. The detailed parameters of the wellbore
condition are referred from the other study [60] and shown in Table 3.2. For the BHP measurement,
WDP is used for all scenarios. Unlike the traditional mud-pulse telemetry, WDP increases the data
transmission rate up to 10* - 10° bits per second and provides reliable bottomhole data to the

surface to enable MPD control systems in real-time [41].

Table 3.2: Wellbore Conditions II

Parameter Value(AES) Value(SI)
Well depth 11,800 ft 3,600 m
Riser inner diameter 19”7 0.48 m
Water depth 590 ft 180 m
Casing inner diameter 9” 0.23 m
Casing depth 7,100 ft 2,164 m
Drill string average outer diameter | 4.5” 0.12m
BHA length 150 ft 457 m
BHA average outer diameter 6.7” 0.17m
Open hole/bit size 8.5” 0.2m
Reservoir depth 9840 ft 3,000 m
Reservoir Pore Pressure 401.0 bar/1.364 s.g. | 401.0e+05 Pa/1.364 s.g.
Initial mud density 1.24 s.g. 1.24 s.g.

An important factor in the MPC design is the relationship between inputs and outputs.
Figure 3.4 shows the MPC design matrix with +/- signs that denote the positive or negative gain
relationships. Various process dynamics models could be used for these relationships such as
transfer function or state space forms that have equivalent relationships. These types of models
represent both transient behavior and steady state gain. In Figure 3.4, BHP (p;;) is the main
controlled variable (CV) for the normal operation and pipe connection procedure. The Mud flow
balance (gp,;) 1s considered as an additional CV for kick attenuation. The three MPD manipulated
variables are choke opening (Zcjoke), back pressure pump (gpqck), and main mud pump (g,). All

three variables play a role as MVs except for the pipe connection procedure where the main mud
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flow is manually ramped up and down. Therefore, the main mud flow is considered as a ramped
input for the pipe connection procedure. The MPC algorithm reflects the influence of the ramping
sequence on the control calculation so that it compensates for the loss or gain of mud flow before

it drives the BHP away from a target value.

MV/DV
Zchoke qback qp
Puit - + +
Ccv
qbal = +

Figure 3.4: Model matrix with the positive and negative interaction between CVs and MVs/DVs

3.3.1 Normal Drilling

Maintaining the wellbore pressure within a pressure window is one of the highest priorities
for normal drilling. Within this pressure window, it is best to maintain pressure near the lower
limit of pore pressure for maximum ROP. This is not only to reduce mud loss in certain zones, but
also because the pressure difference between wellbore and reservoir generate the chip hold-down
effect that causes lower ROP [40]. Although lower pressure is desired, approaching the reservoir
pore pressure increases the possibility of a gas influx. In the normal drilling scenario, two aspects
of NMPC are tested. The first is control performance when the set point or set range is changed,
called servo control. The set range of the BHP is changed to sufficiently cover a wide operation
range. All three MVs (choke opening, main mud pump flow, and back pressure pump) are actively
adjusted to meet the new set range of BHP. The weighting factors in the objective function for each
MYV are tuned to adjust the relative movements among the MVs. The second aspect is related to
an optimization feature of MPC. While the BHP is maintained in the desired set range, the linear
programing (LP) objectives for the CVs and MVs drive the variables to the upper or lower limit of
each. The parameters c, and c,, in Eq 3.8 are the cost parameters for the minimized LP objectives.

They are positive constants to push the BHP to the low value of the range near the pore pressure.
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3.3.2 Pipe Connection

Pipe connection is the addition of multiple sections of drilling pipe to the existing drill
string as the drill bit penetrates the formation. Based on a rough calculation with typical ROP
and length of a single pipe stand, the pipe connection procedure takes place every one to three
hours [46]. During the procedure, the main mud pump flowrate is ramped down to zero and waits
until a new pipe is added and then ramped back up to normal drilling operation. The BHP is formed
by three different sources, hydrostatic pressure of mud and cuttings, annulus friction pressure loss
by mud flow rate, and back-pressure exerted by the back-pressure pump and choke valve. By
ramping down the main mud flow rate, one of the pressure sources exerted on the bottomhole is
lost. The back-pressure system includes the choke valve and back-pressure pump and is adjusted
to compensate for the BHP decrement. Note that the hydrostatic pressure does not change during
the entire pipe connection procedure. In the MPC configuration for pipe connection procedure,
the main mud pump flowrate (g,) switches from an optimized degree of freedom to a fixed ramp
input. The predefined ramping sequence of the mud flowrate (g,) is not a part of the MPC output.
However, it has a significant effect on the BHP and is therefore considered by MPC calculation.
By having this feedforward input in the MPC, the pressure control performance is significantly

improved in comparison with the case that fully relies on feedback control.

3.3.3 Kick Attenuation

When the drill bit enters a formation that has high reservoir pressure, formation gas may
unexpectedly penetrate into the wellbore as the pore pressure exceeds the BHP. The gas influx
from the formation may require more aggressive well control methods or may cause loss of well
control in extreme circumstances. To prevent such problems, any detected gas influx above a
certain threshold required for well control is typically circulated out after the well is shut in. In
MPD, the mud pump flowrate and choke valve regulate the BHP without shutting in the well
and stopping the drilling process. The kick is conventionally detected by monitoring the mud
pit levels or by observing an imbalance between mud pump flow and returning mud. Other kick
detection methods include monitoring of unexpected increase in annulus pressure as the dissolved

gas escapes the formation or an unexpected decrease in hydrostatic pressure due to the expansion
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of the dissolved gas as it travels with the mud back to the surface. The control strategy for the BHP
should be differentiated between the normal operation and the kick situation. To decrease the high
BHP in normal operation, the choke valve opens and the mud pump flowrate decreases. During
a kick, the same control actions, however, still allow or even accelerate the gas influx to rise up
to the surface through the mud circulation. The strategy in the previous research [21] correctly
decreases the choke valve opening and increases the mud pump flowrate by switching the CV
from BHP (p,;;) to choke valve pressure (p.) with a calculated higher set point. The other research
proposed a different switching method between BHP control and mass balance control with a PID
control algorithm [30]. In this study, the mass balance control concept is adopted with an MPC
algorithm. The flow balance is added to the BHP control configuration as a second CV without
additional switching logic. However, by introducing the second CV, conflicts potentially arise from
physically infeasible constraints of all the CVs and MVs. These situations are significantly reduced
by the aforementioned MPC advantages, such as the range control feature and weight factors for
the CVs in the objective function to prioritize conflicting objectives. In addition to these, a CV

prioritization is added to exclude a CV from the MPC calculation in a specific condition. The
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condition is defined by adding additional high and low limits for CVs that are normally higher
and lower than set ranges. When the current value of one CV violates these limits, the controller
temporarily gives up controlling this CV while still controlling the other CVs that stay within in
the specified limits. A simplified illustration in Figure 3.6 shows how this method works in the
kick situation. When BHP increases beyond the prioritizing limit, MPC immediately turns off the
BHP CV and fully focuses on the Flow Balance CV. After mitigating the gas influx, the new set
range is set based on the stabilized BHP plus a safety margin. Then, the controller automatically

turns on the BHP CV again by having a current value within the prioritizing limit.

3.4 Results and Discussions

The simulation results of the three previously described scenarios are detailed in this sec-
tion. Figure 3.7 and 3.8 show the result of normal drilling operation. The servo control perfor-
mance is tested for both PID and NMPC. The SISO configuration of PID allows the controller to
move one MV at a time. The choke valve opening (z.) is a single MV for the PID controller while
NMPC adjusts choke valve opening (z.) and mud pump flowrate (g,) simultaneously. In order to
test the performance for a severe situation, greater changes in the set point than typical operation
are demonstrated. The PID controller cannot reach the set point changes, even though the choke
valve moves are more aggressive and cover the full range of the valve opening (0 - 100%). This
result shows that the operation is limited into a narrow pressure range with adjustments only to the
choke valve opening. Improved performance is demonstrated by using the mud pump flowrate to
add or remove the pump head pressure in the wellbore pressure. In the NMPC result, BHP quickly
follows the set point changes by coordinating adjustments to the two MVs.

Figure 3.9 and 3.10 show the results of the pipe connection procedure. Unlike the nor-
mal drilling scenario, the pipe connection procedure covers a wider operation range by ramping
down and up the main mud pump from the normal operation range to zero and back again. In
this case, the nonlinearity problems are more evident than in a normal drilling operation. Similar
to the normal operation case, the PID controller fails to maintain the BHP within an acceptable
range (Figure 3.9). Although it fully closes the choke opening while ramping down the mud pump
flowrate, it is not sufficient to compensate for the mud pump head pressure loss. For this specific

case;-MPD.employs.the.back pressure pump to exert additional pressure by maintaining the mud
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Figure 3.7: BHP control performance during normal drilling - PID

circulation flow through the choke valve. The back pressure pump is included as an MV in the
NMPC configuration. Thus, the back pressure pump and choke valve move together and success-
fully maintain the BHP within £ 1 bar deviation (Figure 3.10). Furthermore, when the mud pump
flowrate MV is set to receive a ramp input, NMPC automatically considers it as a process distur-
bance variable, DV. The NMPC controller includes the change of the DV in the prediction and
control calculation. This gives feedforward information that is unavailable to controllers that rely

solely on feedback control. To validate nonlinear control of the Hammerstein-Weiner NMPC, the
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Figure 3.8: BHP control performance during normal drilling - NMPC

pure LMPC control results are compared with the NMPC results in the same plot in Figure 3.10.
The LMPC, not including the Hammerstein-Weiner nonlinearity block, shows severe oscillation
on both the CVs and MVs when the mud pump flowrate reaches zero. On the contrary, the NMPC
shows the appropriate control performance covering the process nonlinearity with the static non-

linear blocks.

Figure 3.11 and 3.12 show the kick attenuation performance of NMPC. The CVs and We-
Mod output are shown in Figure 3.11 and MVs of NMPC are displayed in Figure 3.12. The
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Figure 3.9: BHP control performance during pipe connection - PID

additional CV, flow balance (gpq), is added to the existing control matrix that already has BHP as

a main CV for normal drilling and pipe connection. Both CVs are turned on at the beginning of

the simulation. The control set ranges of the BHP and flow balance are set to &= 1 of 466 bar and
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Figure 3.10: BHP control performance during pipe connection - LMPC & NMPC

4+ 0.01 of 0 m®/min, respectively. New prioritizing limits are applied to both CVs, with the limits

for the BHP being relatively narrower than those of the flow balance, as summarized below.

Control set range for py;; = set point for pp;; £+ 1 bar

ol set range for gy = set point for gpe & 0.01 m3/min

52

www.manharaa.com



Prioritizing limits for py; = set point for py;; £ 3 bar
Prioritizing limits for ¢, = set point for ¢, + 0.5 m*/min
where, set point for py;; = 466 bar

set point for gp, =0 m>/min

Both of the CVs (flow balance and BHP) fluctuate as the gas influx starts at 100 seconds.
The controller immediately turns off the BHP control letting it increase and stabilize at a new
balance condition while attenuating the gas influx with the other CV, flow balance. After the
gas influx starts, the BHP steeply increases and goes above the prioritizing limits, while the flow
balance is still within prioritizing limits. The controller logic prioritizes flow balance control over
BHP control to attenuate the kick. In the results, the controller closes the choke valve and increases
both the main mud pump and the back pressure pump, which is anticipated in kick attenuation.
These control actions efficiently block the gas migration and increase the wellbore pressure to
balance to the new reservoir pressure. Approximately one minute after the kick occurs, BHP is
stabilized at 481 bar, stopping the amount of total gas influx at 60 kg. At 180 seconds, the set point
of the BHP is adjusted based on the current pressure with an additional safety margin. The BHP is

now placed within the prioritizing limits and turned on for future pressure control.

3.5 Conclusions

This study proposes an advanced NMPC control algorithm for MPD automation of BHP
and flow balance control. The Hammerstein-Wiener based NMPC shows a superior control per-
formance to a conventional PID controller. A number of advantages of NMPC are discussed and
validated with common operation scenarios. The proposed method assumes that the bottom hole
pressure is measurable by WDP telemetry. The proposed method improves the control reliability
by eliminating uncertainties of predictive BHP estimation. By adjusting multiple MVs simultane-
ously the control performance is significantly improved for normal drilling, pipe stand connections,
and in kick attenuation. For the kick attenuation scenario, adding the additional CV and prioritiz-
ing limits combines flow balance control and utilizes BHP control when there is no significant flow

imbalance.
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CHAPTER 4. CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

MPD and WDP are two significant advances in the drilling industry providing better con-

trol of tight pressure limits. MPD gives more adjustable variables in a closed system to have a
fast response and precise pressure control. WDP offers real-time communication to bottomhole
tools. These two benefits of MPD and WDP open the door for research and development of ad-

vanced control systems for drilling operation. As many other industries have already experienced,

model-based control and estimation algorithms have the potential to be of significant benefit to

the drilling industry. However, unlike in other industries, MPD automation using MPC and MHE
is more challenging due to the specific complexities of drilling operations. Current high-fidelity
drilling simulators have a large number of variables and parameters that require a large amount
of computational power for simulation and these sophisticated simulation models cannot be used
directly in optimization. A low-order model captures the main dynamics of the drilling hydraulics

and has been used successfully in many drilling automation research projects. The simplified flow

model used in this study is more comprehensive than the low-order models because it is a slightly
simplified version of an existing high-fidelity model, keeping the most important components
but omitting or simplifying those that are less important for BHP control. The other type of model
used in this study is a Hammerstein-Wiener model classified as an empirical nonlinear model. This
type of model has many benefits in terms of computation time because it consists of linear
dynamics and static nonlinear gain blocks. The nonlinear gain blocks manage the nonlinearity of
the process by transforming the input or output of linear dynamic model. These nonlinear gain
blocks are not included in the optimization problem. Thus, the computational load is similar to

that of linear MPC.
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The objective of this study is to validate the control performance of MPC and MHE by
using the two different types of models, SFM and Hammerstein-Winer model in three different
test scenarios.

Chapter 2 investigates the BHP control performance of a MPC controller that uses a sim-
plified, physics-based flow model. Full-closed and semi-closed loop control schemes are presented
and in each scheme the BHP is shown to be successfully controlled in conditions of normal drilling,
pipe connection, and mud density displacement. The results demonstrate tight controller perfor-
mance that successfully maintained the BHP to within 1 bar of the set point in each scenario.
Additionally, MHE is used to calibrate the model and effectively estimates the drill string and
annulus friction factors. The effectiveness of the controller is predicated on the quality of the es-
timator, and the present study demonstrates that tight BHP control can be achieved in conjunction
with estimation of the unknown model parameters, f, and f;.

In normal drilling scenarios, the BHP can be controlled and changed to a desired setpoint.
Control is improved with a full-closed control scheme, but the advantages over a semi-closed
loop are marginal. Similarly, when controlling BHP during pipe connections, it is more effective
to use a full-closed loop, but the semi-closed loop is also successful. Inclusion of feed forward
control in the MPC algorithm enabled effective BHP control in this scenario. It is observed that
model mismatch is introduced by the pipe connection when using a semi-closed loop, and model
recalibration should be performed after such a procedure. In mud density displacement the semi-
closed loop again develops some mismatch that would be best remedied by a model recalibration,
but the mismatch is minimal and the recalibration does not need to immediately follow a period
of mud density displacement. The full-closed scheme again proves more effective than the semi-
closed scheme for mud density displacement.

The MPC controller handled the several scenarios successfully and the results indicate that
a simplified model has the potential to achieve BHP control and such a model would be effective.
The data shows that the differences between full-closed loop and semi-closed control schemes is
minimal. The results of this study solidify the utility of SFM in MPD. A SFM can be a useful tool
for controlling systems using mud pulsing or WDP, and such control comes at a smaller computa-
tional cost than use of a HFM and offers the benefit of tight control that improves drilling quality

as well as the opportunity to drill more complex wells that have narrow pressure margins.
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Chapter 3 proposes an advanced NMPC control algorithm for MPD automation of BHP
and flow balance control. The Hammerstein-Wiener based NMPC shows a superior control per-
formance to a conventional PID controller. A number of advantages of NMPC are discussed and
validated with three operation scenarios. The proposed method assumes that the bottom hole pres-
sure is measurable by WDP telemetry. The proposed method improves the control reliability by
eliminating uncertainties of predictive BHP estimation. By adjusting multiple MVs simultaneously
the control performance is significantly improved for normal drilling, pipe stand connections, and
in kick attentuation. For the kick attenuation scenario, adding the additional CV and prioritizing
limits combines flow balance control and utilizes BHP control when there is no significant flow
imbalance.

In a first scenario, the performance of set point tracking during normal drilling operation is
compared. By changing the set point of the BHP, the conventional controller manipulates only the
choke valve opening while the nonlinear controller moves choke valve opening, mud pump, and
back pressure pump simultaneously. In a second scenario, a pipe connection of a typical drillpipe
stand is demonstrated. The conventional controller is not able to regulate the BHP by adjusting the
choke valve only. Although a linear version of the controller is able to exploit multivariable rela-
tionships, absence of the nonlinear relationships results in severe oscillation when the operational
range is shifted outside of the training region. The nonlinear controller maintains a BHP within
1 bar of the requested set point. A third scenario investigates the kick attenuation performance of
conventional and nonlinear control algorithms. The nonlinear controller attenuates the kick within

well control conditions without requiring a well shut-in procedure.

4.2 Future Work

1. Develop a mud mixing automation system
Mud density is one possible adjustable variable for BHP control. Most BHP control research
focuses on using the choke valve, main mud pump, and back pressure pump as a fast and
effective manipulated variables. Although the mud properties have a slow response time
for BHP control, eliminating the manual mud mixing time can allow the mud density make

additional contributions to the control scheme. Developing the simplified model with an
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enhanced mud property portion and combining it with the existing BHP control systems is

suggested for a future research topic.

2. Deploy a simplified drillstring dynamics model for real-time automation and optimization
The empirical drill string dynamics model has been used for combined ROP and BHP con-
trol. ROP can be improved by minimizing the BHP. It is necessary to use or develop the
physics based drill string dynamics model to include an elaborate bit/rock interaction model
to have a better understanding of the relationship between BHP and ROP. This work would
also expand case studies for hole cleaning and cuttings build-up control by combining the

hydraulics model with a drilling dynamics model for a multivariable drilling automation

system.
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APPENDIX A. OBJECTIVE FUNCTIONS OF MPC AND MHE

A.1 QP objective function for MHE

N
HE)HCD = Y [Oprentilk = Ympn+ilk) W Opp—N-tile = Ymk—N-+ie) T (Aplsz+i|kVApk—N+i|k)]
i=1

(A1)

where, Apy_n yilk = Pk—N-+ilk — Pk—N+i—1[k (A.2)
sit. 0= f(%,x,y,p,d,u) (A.3)
0=g(x,y,p,d,u) (A4)

0 < h(x,y,p,d,u) (A.5)

Table A.1: Summary of parameters used in QP objective function for MHE

Parameter | Description

P Objective function
N Horizon length for MHE
k Current time step

YprYm Measured CV value (y,) and model result of CV value (y,,)

V.W Weighting Matrices for CVs and parameters

u,x,p,d | Model inputs(u), states(x), parameters(p), and disturbance(d)

f,8,h Model equation (f), output function (g), and inequality constraints (/)
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A.2 QP objective function for MPC

N M
min® = Y (Grriik — 90" QG — Z (Augy i RAw 1) (A.6)
i=1 =1
where,Auk+j|k = uk+j+1|k —uk+j|k (A7)
sit. 0= f(%,x,y,p,d,u) (A.8)
0=g(x,y,p,d,u) (A.9)
0 < h(x,y, p,d,u) (A.10)
d
— = A1l
dt +yt sp ( )

Table A.2: Summary of parameters used in QP objective function for MPC

Parameter | Description

o Objective function

N.M Prediction horizon(/V), Control horizon(M)

k Current time step
y Predicted CV value of dynamic model
Vt Desired set point trajectory in the prediction horizon

O,R Weighting Matrices for CVs and MVs

sp Set point in the prediction horizon

u,x,p,d | Model inputs(u), states(x), parameters(p), and disturbance(d)

f,8,h Model equation (f), output function (g), and inequality constraints (/)

Te Time constant of desired controlled variable response
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APPENDIX B. PYTHON CODE FOR SFM MPC AND MHE

B.1 Master Code

### IMPORTS ###

import well_model

import sfm_mhe

import sfm_mpc

import numpy as np

import datetime as dt

import matplotlib.pyplot as plt

import time as tme

start_time = tme.time()

timeStep = 5 # seconds

n = 240 # number of timesteps

# Define horizons

==
I

5 # Estimation Horizon for MHE

o
I

5 # Prediction Horizon for MPC

# Define time vector for simulation [Days]
TimeStart = dt.datetime.now() # find current date

# Convert to Excel Format ( Difference in days since 1/1/1900)

Begin = dt.datetime(1899,12,30)

delta = TimeStart - Begin

TimeStart = float(delta.days) + (float(delta.seconds) / 86400)
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TimeStep = float(timeStep) / (24 * 60 * 60) # conversion to days

### Arrays for storing data ###
time = np.zeros(n)

bitposition = np.zeros(n)

p_bit_hfm = np.zeros(n)

p_bit_sfm = np.zeros(n)
spp_hfm = np.zeros(n)
spp_sfm = np.zeros(n)

mud_flow_in = np.zeros(n)

mud_flow_out_hfm = np.zeros(n)

mud_flow_out_sfm = np.zeros(n)
choke_pressure_input = np.zeros(n)
choke_pressure_hfm = np.zeros(n)

choke_pressure_sfm = np.zeros(n)

friction_d_hfm = np.zeros(n) # hfm friction for drillstring
friction_a_hfm = np.zeros(n) # hfm friction for Annulus
friction_d_sfm = np.zeros(n) # sfm friction for drillstring
friction_a_sfm = np.zeros(n) # sfm friction for Annulus

SP = np.zeros(n)

class data_input_class():
TimeStep = TimeStep

time = TimeStart

bitposition = 3765. # [m]
depthhole = 3765. # [m]
rotary_speed = 100. # [rpm]
ROP = 0. # [m/hr]
mudflowin = 1000. # [m~3/s]
mud_density_in = 1.5 # [sg]
desired_emw = 1.5 # [sgl

# [bar]
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cross_flow = 0 # [lpm]
input_mud_temp = 50. # [degC]

set_point_position = 3765. # [m]

friction_d = 1.0 # friction for Drillstring
friction_a = 1.0 # friction for Annulus
mhe_sw = 0 # switch for mhe

mpc_sw = 0 # switch for mpc

SVi_sw = 0 # switch for BHP

SV2_sw = 0 # switch for SPP

FVi_sw = 0 # switch for f_a

FV2_sw = 0 # switch for f_d

SP = 313 # setpoint

well_input = data_input_class()

mhe_input = data_input_class()

mpc_input = data_input_class()

for k in range (0,n): # k = current timestep
### Update values to be sent into the well
Time = TimeStart + TimeStep*k
well_input.time = Time
well_input.bitposition = well_input.bitposition +
(TimeStep#*24.)*well_input.ROP
bitposition[k] = well_input.bitposition

well_input.depthhole = well_input.bitposition

## Model Calibration
if k == 0:

well_input.friction_a = 1.1
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mhe_input.SVl_sw = 1
mhe_input.SV2_sw = 0
mhe_input.FVl_sw = 1

mhe_input.FV2_sw = 0

if k == 30:
mhe_input.mhe_sw = 1
mhe_input.SV1l_sw = 0
mhe_input.SV2_sw = 1
mhe_input.FVl_sw = 0

mhe_input.FV2_sw = 1

## Start Control

if k == 50:
mhe_input.mhe_sw = 1
mhe_input.SVl_sw = 1
mhe_input.SV2_sw = 1

mhe_input.FVl_sw = 1

I
[y

mhe_input.FV2_sw

mpc_input.SP = 313

I
[E

mpc_input.mpc_sw

if k == 60:

mpc_input.SP = 320

if k == 100:

mpc_input.SP = 300

if k == 140:

mpc_input.SP = 315
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sfm_mpc.sfm_save()

### Run estimator

e_ig = np.array([mhe_input.friction_a, mhe_input.friction_d])

if k > H and mhe_input.mhe_sw==1:
ctlr_moves = np.array([choke_pressure_input[k-H:k],

mud_flow_in[k-H:k]])

measured = np.array([p_bit_hfm[k-H:k],
spp_hfm[k-H:k],
friction_a_sfm[k-H:k],

friction_d_sfm[k-H:k]])

estimator_out = sfm_mhe.estimate(e_ig, well_input, mhe_input, measured,

ctlr_moves, H, k)

mhe_input.friction_a = estimator_out[0]

mhe_input.friction_d = estimator_out[1]

else:
e_ig = [mhe_input.friction_a, mhe_input.friction_d]
estimator_out = e_ig

mpc_input = mhe_input

### Run controller

g_p_hat0 = (np.zeros(P) + well_input.mudflowin)

p_c_hat0 = (np.zeros(P) + well_input.choke_press)

x_ig = np.row_stack((p_c_hat0,q_p_hat0))
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well_input.mudflowin=control_out[1,0]

well_input.choke_press=control_out[0,0]

well_input.time = Time

sfm_mhe.sfm_load()

sfm_mpc.sfm_load()

## Run well

well_meas = well_model.well_run(well_input)

## Run sfm for MHE

mhe_meas = sfm_mhe.mhe_run(well_input,mhe_input,e_ig,H)

## Run sfm for MPC

mpc_meas = sfm_mpc.mpc_run(mhe_input)

### Store Data

time[k] = (well_input.time-TimeStart)*24*60%*60
mud_flow_in[k] = well_input.mudflowin
mud_flow_out_hfm[k] = well_meas.flowout_well *60000.

choke_pressure_input [k] = well_input.choke_press

choke_pressure_hfm[k] = well_meas.p_c

choke_pressure_sfm[k] = mhe_meas.p_c
p_bit_hfm[k] = well_meas.p_bit

p_bit_sfm[k] = mhe_meas.p_bit

spp_hfm[k] = well_meas.spp/1.0e5 # [bar]

spp_sfm[k] = mhe_meas.spp

friction_a_sfm[k] estimator_out [0]

friction_d_sfm[k]

estimator_out[1]

friction_a_hfm[k well_input.friction_a
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friction_d_hfm[k] = well_input.friction_d

SP[k] = mpc_input.SP

print "p_bit HFM, SFM:", [k, round(p_bit_hfm[k],2), round(p_bit_sfm[k],2)]

elapsed_time = tme.time() - start_time

print "Time Elapsed: ",elapsed_time,'"seconds"

## plotting

plt.figure(0,figsize=(7,5))

plt.subplot(211)

plt.plot(time[H+2:n],p_bit_hfm[H+2:n],’r--’,1w=2, label=’HFM’)
plt.plot(time[H+2:n],p_bit_sfm[H+2:n],’b-’,1w=2, label=’SFM’)
plt.plot(time[H+2:n],SP[H+2:n],’r-’,1w=2, label=’SP’)
plt.axis([0,n*timeStep,np.floor(np.min(p_bit_sfm))-5,np.ceil(np.max(p_bit_sfm))+5])
plt.legend(loc=4,fontsize=14)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.ylabel (’BHP (bar)’,fontsize=14)

plt.subplot(212)

plt.plot(time [H+2:n],spp_hfm[H+2:n],’r--’,1w=2,label="HFM’)
plt.plot(time[H+2:n],spp_sfm[H+2:n], ’b-’,1w=2,label="SFM’)
plt.axis([0,n*timeStep,np.floor(np.min(spp_sfm))-5,np.ceil (np.max(spp_sfm))+5])
plt.xlabel(’Time (s)’,fontsize=14)

plt.ylabel(’SPP (bar)’,fontsize=14)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.legend(loc=4,fontsize=14)

plt.savefig(’MPCl.png’, format=’png’, dpi=400, bbox_inches=’tight’)

1t.savefig("MPCl.eps’, format=’eps’, dpi=400, bbox_inches=’tight’)
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plt.figure(l,figsize=(7,8))

plt.subplot(411)

plt.plot(time[H+2:n],friction_a_sfm[H+2:n], ’b-’,1lw=2,label=’SFM’)
plt.axis([0,n*timeStep,min(friction_a_sfm)-0.1,max(friction_a_sfm)+0.1])
plt.legend(loc=4,fontsize=14)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.ylabel("£f$_{a}$’,fontsize=14)

plt.subplot(412)

plt.plot(time[H+2:n],friction_d_sfm[H+2:n], ’b-’,lw=2,label=’SFM’)
plt.axis([0,n*timeStep,min(friction_d_sfm)-0.1,max(friction_d_sfm)+0.1])
plt.legend(loc=4,fontsize=14)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.ylabel(’£$_d$’ ,fontsize=14)

plt.subplot(413)

plt.plot(time[H+1:n],choke_pressure_input[H+1:n],’k-’,1lw=2)

plt.axis([0,n*timeStep,np.floor (np.min(choke_pressure_input))-5,
np.ceil (np.max(choke_pressure_input))+5])

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.ylabel (’P$_{choke}$ (bar)’,fontsize=14)

plt.subplot(414)

plt.plot(time[H+1:n] ,mud_flow_in[H+1:n],’k-’,1lw=2)

plt.axis([0,n*timeStep,np.floor (np.min(mud_flow_in))-10,
np.ceil (np.max(mud_flow_in))+10])

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)
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plt.xlabel(’Time (s)’,fontsize=14)
plt.ylabel(’q$_p$ (1/m)’,fontsize=14)

plt.savefig(’MPC2.png’, format=’png’, dpi=400, bbox_inches=’tight’)

plt.savefig(’MPC2.eps’, format=’eps’, dpi=400, bbox_inches=’tight’)

well_model.hfm_shutdown()
sfm_mhe.sfm_shutdown()

sfm_mpc.sfm_shutdown()

B.2 SFM MHE Code

### IMPORTS ###

import numpy as np

import ctypes

import os

from _ctypes import Freelibrary

from scipy.optimize import minimize

dllfile = ’SM_Wrapper64r.dll’

configurationfile=’CaseG.wel’

cd = os.getcwd()

model_Path = os.path.realpath(’SFM_mhe’)

dll = ctypes.WinDLL(os.path.join(model_Path, dllfile))

pSimplifiedModel = dll.simplifiedWrapper_Create(ctypes.c_char_p(model_Path))
dll.setDouble(pSimplifiedModel,

ctypes.c_char_p("BoundaryCondition"),ctypes.c_double(7))

h = open(os.path.join(model_Path + ’\InputFileName.in’),’w’)

h.write(configurationfile)

h.close()
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class sfm_meas():
t=0
q-p = 0
gq_choke = 0
spp = O
bh_ECD = 0
p_c =0
p_bit = 0
pSimplifiedModel = pSimplifiedModel
dll = 411

### initialize flow model
def mhe_run(well_input,mhe_input,e_ig,H):

### Run Well

x = np.zeros (43)

x =x + -999

x[1] = well_input.time - well_input.TimeStep*H

x[2] = well_input.bitposition - (well_input.TimeStep#*24.)*well_input.ROP*H

x[5] = well_input.rotary_speed *2.*np.pi/60. # [rad/s]

x[8] = well_input.mudflowin / (1000. * 60.) # [m3/s]
x[9] = well_input.mud_density_in *1000. # [kg/m3]
x[10] = well_input.depthhole # [m]
x[11] = well_input.desired_emw * 1000. # [kg/m3]
x[17] = well_input.choke_press * 1leb # [Pal
x[20] = well_input.input_mud_temp +273.15 # [K]

x[23] = well_input.cross_flow / (1000. * 60.) # [m3/s]

x[30] = well_input.set_point_position

if mhe_input.FVl_sw == 1 and mhe_input.FV2_sw ==

dll.setDouble(pSimplifiedModel,ctypes.c_char_p("CalibratedFrictionFactorAnnulus"),
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ctypes.c_double(e_ig[0]))
dll.setDouble(pSimplifiedModel,types.c_char_p("CalibratedFrictionFactorDrillString"),
ctypes.c_double(mhe_input.friction_d))
if mhe_input.FVl_sw == 0 and mhe_input.FV2_sw ==
dll.setDouble(pSimplifiedModel,
ctypes.c_char_p("CalibratedFrictionFactorAnnulus"),
ctypes.c_double(mhe_input.friction_a))
dll.setDouble(pSimplifiedModel,
ctypes.c_char_p("CalibratedFrictionFactorDrillString"),
ctypes.c_double(e_ig[1]))
if mhe_input.FV1_sw ==1 and mhe_input.FV2_sw ==
dll.setDouble(pSimplifiedModel,
ctypes.c_char_p("CalibratedFrictionFactorAnnulus"),
ctypes.c_double(e_ig[0]))
dll.setDouble(pSimplifiedModel,
ctypes.c_char_p("CalibratedFrictionFactorDrillString"),

ctypes.c_double(e_ig[1]))

realTable_well = (ctypes.c_double * len(x)) (*x)
dll.run(pSimplifiedModel, ctypes.byref (realTable_well))
C_Out_SFM = (ctypes.c_double * 8) (*np.zeros(8))

dll.getRealTimeParameters(pSimplifiedModel, ctypes.byref (C_Out_SFM))

###Prep data for output

C_Out_SFM[0] # [min]

sfm_meas.t

sfm_meas.q_p C_Out_SFM[1] # [1lpm]
sfm_meas.q_choke = C_Out_SFM[2] # [lpm]
sfm_meas.spp = C_Out_SFM[3] # [bar]
sfm_meas.bh_ECD = C_0Out_SFM[4] [kg/m3]

#
C_Out_SFM[5] # [bar]
#

sfm_meas.p_c

C_Out_SFM[6] [bar]

sfm_meas.p_bit
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return sfm_meas

## Controller Function ###
def estimate(e_ig, well_input, mhe_input, measured, ctlr_moves, H, k):
bnds = [(0.05,10.0),(0.05,10.0)]
est = minimize(predictions, e_ig, args=(well_input, mhe_input, measured,
ctlr_moves, H, k), method=’SLSQP’,bounds=bnds,options={’disp’: False,
’eps’:1.0e-09, ‘maxiter’: 100, ’ftol’:.05})
ff = est.x

return ff

def predictions(e_ig, well_input, mhe_input, measured, ctlr_moves, H, k):

dll.loadState(pSimplifiedModel)

predictions.spp = np.zeros(H) # [bar]
predictions.q_p = np.zeros(H) # [lpm]
predictions.p_c¢ = np.zeros(H) # [bar]

predictions.q_choke = np.zeros(H)
predictions.p_bit = np.zeros(H)

se = np.zeros(H)

### Run Well
for j in range(0,H):
mhe_input.time = well_input.time + well_input.TimeStep*(j-H)
mhe_input.bitposition = well_input.bitposition -
(well_input.TimeStep#*24.)*well_input.ROP*H +
(well_input.TimeStep#*24.)*well_input.ROP

mhe_input.depthhole = mhe_input.bitposition

np.zeros(43)

"
I

x + -999

X =
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x[1]

mhe_input.time

x[2] = mhe_input.bitposition

x[5] = mhe_input.rotary_speed *2.*np.pi/60. # [rad/s]
x[8] = ctlr_moves[1, (-H+j)]/(1000%60) # [m3/s]
x[9] = mhe_input.mud_density_in *1000. # [kg/m3]
x[10] = mhe_input.depthhole # [m]

x[11] = mhe_input.desired_emw * 1000. # [kg/m3]
x[17] = ctlr_moves[0, (-H+j)] * 1.0e5 # [Pal

x[20] = mhe_input.input_mud_temp +273.15 #[K]

x[23] = mhe_input.cross_flow / (1000. * 60.) # [m3/s]

x[30] = mhe_input.set_point_position

if mhe_input.FVl_sw == 1 and mhe_input.FV2_sw ==
dll.setDouble(pSimplifiedModel,
ctypes.c_char_p("CalibratedFrictionFactorAnnulus"),
ctypes.c_double(e_ig[0]))
dll.setDouble(pSimplifiedModel,
ctypes.c_char_p("CalibratedFrictionFactorDrillString"),
ctypes.c_double(mhe_input.friction_d))
if mhe_input.FVl_sw == 0 and mhe_input.FV2_sw ==
dll.setDouble(pSimplifiedModel,
ctypes.c_char_p("CalibratedFrictionFactorAnnulus"),
ctypes.c_double (mhe_input.friction_a))
dll.setDouble(pSimplifiedModel,
ctypes.c_char_p("CalibratedFrictionFactorDrillString"),
ctypes.c_double(e_ig[1]))
if mhe_input.FV1_sw ==1 and mhe_input.FV2_sw ==
dll.setDouble(pSimplifiedModel,
ctypes.c_char_p("CalibratedFrictionFactorAnnulus"),

ctypes.c_double(e_ig[0]))
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dll.setDouble(pSimplifiedModel,
ctypes.c_char_p("CalibratedFrictionFactorDrillString"),

ctypes.c_double(e_ig[1]))

realTable_well = (ctypes.c_double * len(x)) (*x)
dll.run(pSimplifiedModel, ctypes.byref(realTable_well))
P_Out_SFM = (ctypes.c_double * 8) (*np.zeros(8))

dll.getRealTimeParameters(pSimplifiedModel, ctypes.byref (P_Out_SFM))

predictions.q_p[j] = P_Out_SFM[1]
predictions.q_choke[j] = P_Out_SFM[2] # [1lpm]
predictions.sppl[j] = P_Out_SFM[3] # [bar]
predictions.p_c[j] = P_Out_SFM[5]

predictions.p_bit[j] = P_Out_SFM[6]

if mhe_input.SVl_sw == 1 and mhe_input.SV2_sw ==
if mhe_input.FV1l_sw == 1 and mhe_input.FV2_sw == 0:
sel[j] = (measured[0,(j)] - predictions.p_bit[(j)])=**2 +
100* (measured[2,H-1]-e_ig[0])**2
if mhe_input.FV1l_sw == O and mhe_input.FV2_sw ==
sel[j] = (measured[0,(j)] - predictions.p_bit[(j)])=*x2 +
100* (measured[3,H-1]-e_ig[1])**2
if mhe_input.SV1l_sw == O and mhe_input.SV2_sw ==
if mhe_input.FV1l_sw == 1 and mhe_input.FV2_sw ==
se[j] = (measured[1,(j)] - predictions.sppl[(j)])**2 +
200* (measured[2,H-1]-e_ig[0]) **2
if mhe_input.FV1l_sw == 0 and mhe_input.FV2_sw ==
sel[j] = (measured[1,(j)] - predictions.sppl(j)])**2 +
1000* (measured[3,H-1]-e_ig[1])**2

if mhe_input.FV1l_sw == 1 and mhe_input.FV2_sw ==
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se[j] = (measured[1,(j)] - predictions.sppl(j)])**2 +
500* (measured[2,H-1]-e_ig[0])**2 +
200* (measured [3,H-1]-e_ig[1]) **2

if mhe_input.SVl_sw == 1 and mhe_input.SV2_sw ==
if mhe_input.FV1l_sw == 1 and mhe_input.FV2_sw ==

se[j] = 2000*(measured[0, (j)] - predictions.p_bit[(j)])**2 + 1000%
(measured[1,(j)] - predictions.sppl[(j)])**2 +
2000* (measured [2,H-1]-e_ig[0])**2 +

500* (measured [3,H-1]-e_ig[1]) **2

obj = np.sum(se)

return obj

def sfm_save():

dll.saveState(pSimplifiedModel)

def sfm_load():

dll.loadState(pSimplifiedModel)

def sfm_shutdown():
dll.simplifiedWrapper_Destroy(pSimplifiedModel)
FreeLibrary(dll._handle)

return

B.3 SFM MPC Code

### IMPORTS ###
import numpy as np

import ctypes

import os
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from _ctypes import Freelibrary

from scipy.optimize import minimize

dllfile = ’SM_Wrapper64r.dll’

configurationfile=’CaseG.wel’

cd = os.getcwd()

model_Path = os.path.realpath(’SFM_mpc’)

dll = ctypes.WinDLL(os.path.join(model_Path, dllfile))

pSimplifiedModel = dll.simplifiedWrapper_Create(ctypes.c_char_p(model_Path))
dll.setDouble(pSimplifiedModel,

ctypes.c_char_p("BoundaryCondition"),ctypes.c_double(7))

h = open(os.path.join(model_Path + ’\InputFileName.in’),’w’)
h.write(configurationfile)

h.close()

class sfm_meas():

t=0

q-p =0

g_choke = 0

spp = O

bh_ECD = 0

p_c =0

p_bit = 0

pSimplifiedModel = pSimplifiedModel
dll = 411

### initialize flow model

def mpc_run(mpc_input):

### Run Well
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x = x + -999

x[1] = mpc_input.time

x[2] = mpc_input.bitposition

x[5] = mpc_input.rotary_speed *2.*np.pi/60. # [rad/s]
x[8] = mpc_input.mudflowin / (1000. * 60.) # [m3/s]
x[9] = mpc_input.mud_density_in *1000. # [kg/m3]
x[10] = mpc_input.depthhole # [m]

x[11] = mpc_input.desired_emw * 1000. # [kg/m3]

x[17] = mpc_input.choke_press * 1leb # [Pal
x[20] = mpc_input.input_mud_temp +273.15 # [K]
x[23] = mpc_input.cross_flow / (1000. * 60.) # [m3/s]

x[30] = mpc_input.set_point_position

dll.setDouble(pSimplifiedModel,
ctypes.c_char_p("CalibratedFrictionFactorAnnulus"),
ctypes.c_double(mpc_input.friction_a))

dll.setDouble(pSimplifiedModel,
ctypes.c_char_p("CalibratedFrictionFactorDrillString"),

ctypes.c_double (mpc_input.friction_d))

realTable_well = (ctypes.c_double * len(x)) (*x)
dll.run(pSimplifiedModel, ctypes.byref(realTable_well))
C_Out_SFM = (ctypes.c_double * 8) (*np.zeros(8))

dll.getRealTimeParameters(pSimplifiedModel, ctypes.byref (C_Out_SFM))

###Prep data for output

sfm_meas.t C_Out_SFM[0] # [min]

sfm_meas.q_p C_Out_SFM[1] # [lpm]
sfm_meas.q_choke = C_Out_SFM[2] # [lpm]

sfm_meas.spp = C_Out_SFM[3] # [bar]
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sfm_meas.bh_ECD = C_Out_SFM[4] # [kg/m3]

sfm_meas.p_c C_Out_SFM[5] # [bar]

sfm_meas.p_bit = C_QOut_SFM[6] # [bar]

return sfm_meas

## Controller Function ###

def control(x_ig,well_input,mpc_input, P, k):

if mpc_input.mpc_sw ==

choke_lower = np.ones(P)*0.0

choke_upper = np.ones(P)*300.0

mud_lower = np.ones(P)*0.0

mud_upper = np.ones(P)*3000.0

lower_bnds = np.append(choke_lower,mud_lower)

upper_bnds = np.append(choke_upper ,mud_upper)

bnds = zip(lower_bnds,upper_bnds)

control = minimize(predictions, x_ig, args=(mpc_input, well_input, P, k),
method=’SLSQP’, jac=None, bounds=bnds, tol=0.01, options={’disp’:

False, ’eps’:1.0e-09, ’maxiter’: 100, ’ftol’:.05})

p_c_hat = control.x[0:P]

g_p_hat = control.x[P:]

else:
g_p_hat = x_igl[1,:]
p_c_hat = x_ig[O0,:]
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x_ig = np.row_stack((p_c_hat,q_p_hat))

return x_ig

def predictions(x_ig, mpc_input, well_input, P, k):

dll.loadState(pSimplifiedModel)

p_bit_hat = np.zeros(P)
SP_hat = np.zeros(P) + mpc_input.SP

se = np.zeros(P)

### Run Well
for j in range(0,P):

mpc_input.time = well_input.time + (mpc_input.TimeStep *(j))

mpc_input.bitposition = well_input.bitposition +
(mpc_input.TimeStep*24.)*mpc_input.ROP

mpc_input.depthhole = mpc_input.bitposition

X = np.zeros(43)

x = x + -999

x[1] = mpc_input.time

x[2] = mpc_input.bitposition

x[5] = mpc_input.rotary_speed *2.*np.pi/60. # [rad/s]
x[8] = x_ig[j+P]/(1000%60) # [m3/s]

x[9] = mpc_input.mud_density_in *1000. # [kg/m3]
x[10] = mpc_input.depthhole # [m]

x[11] = mpc_input.desired_emw * 1000. # [kg/m3]

# [Pal
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x[20]

mpc_input.input_mud_temp +273.15 # [K]
x[23]

mpc_input.cross_flow / (1000. * 60.) # [m3/s]

x[30] = mpc_input.set_point_position

dll.setDouble(pSimplifiedModel,
ctypes.c_char_p("CalibratedFrictionFactorAnnulus“),
ctypes.c_double (mpc_input.friction_a))

dll.setDouble(pSimplifiedModel,
ctypes.c_char_p("CalibratedFrictionFactorDrillString"),

ctypes.c_double (mpc_input.friction_d))

realTable_well = (ctypes.c_double * len(x)) (*x)
dll.run(pSimplifiedModel, ctypes.byref(realTable_well))
P_Out_SFM = (ctypes.c_double * 8) (*np.zeros(8))

dll.getRealTimeParameters(pSimplifiedModel, ctypes.byref (P_Out_SFM))

p_bit_hat[j] = P_Out_SFM[6] # [bar]

# Squared Error
if j > 0:
se[j] = 1000%(SP_hat[jl-p_bit_hat[jl)**2 + 100*(x_igl[jl-x_igl[j-11)*%2
+ 0.1x(x_ig[j+P]-x_ig[j+P-1]) **2

else:
se[j] = 1000*(SP_hat[jl-p_bit_hat[j])**2 +
100*(x_ig[jl-well_input.choke_press)**2 +

0.1x(x_ig[j+P]-well_input.mudflowin) **2

obj = np.sum(se)

return obj
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dll.saveState(pSimplifiedModel)

def sfm_load():

dll.loadState(pSimplifiedModel)

def sfm_shutdown():
dll.simplifiedWrapper_Destroy(pSimplifiedModel)
FreeLibrary(dll._handle)

return

B.4 HFM Well Simulation Code

### IMPORTS ###
import ctypes
import os

import numpy as np

from _ctypes import Freelibrary

dllfile = ’FlowModel64r.dl1l’
configurationfile = ’CaseG.wel’

model_instance = ’HFM’

class well_meas():
flowout_well = O
pres_well = 0

gas_influx = 0

p_bit 0
p_c =0

h_bit

]
o

q_choke = 0

pit_gain = 0
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surge_vol = 0

mudflowin = O
friction_factor = 0
p_choke = 0
pit_gain =0

spp = O

dll =0

### creating quasi header file
class DataStructureQut(ctypes.Structure):

_fields_ = [(’bhEcdCalc’,ctypes.c_double),
(’bhTempCalc’,ctypes.c_double),
(’csEcdCalc’,ctypes.c_double),
(’csTempCalc’,ctypes.c_double),
(’pitGainCalc’,ctypes.c_double),
(’sppCalc’,ctypes.c_double),
(’flowOutCalc’,ctypes.c_double),
(’tempOutCalc’,ctypes.c_double),
(’cmpLiftHeight’,ctypes.c_double),
(’cmpPresSet’,ctypes.c_double),

(’ cmpSucPCalc’ ,ctypes.c_double),

(’ cmpRpmCalc’,ctypes.c_double),

(’ cmpPowCalc’,ctypes.c_double),

(’ cmpSurgeVolCalc’,ctypes.c_double),
(’pChoke’ ,ctypes.c_double),
(’frictionFactor’,ctypes.c_double),
(’bhPresCalc’,ctypes.c_double),
(’csPresCalc’,ctypes.c_double),
(’ropCalc’,ctypes.c_double),
(’diffWellPoreEmwCalc’,ctypes.c_double),
(’diffFracWellEmwCalc’,ctypes.c_double),

’surgeVolCalc’,ctypes.c_double),
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(’tvdBottomCalc’,ctypes.c_double),
(’pwdPresCalc’,ctypes.c_double),
(’pwdTempCalc’,ctypes.c_double),
(’volBlanketRiserCalc’,ctypes.c_double),
(’levelMudRiserCalc’,ctypes.c_double),
(’volMudRiserCalc’,ctypes.c_double),
(’volCMPRetLineCalc’,ctypes.c_double),

(’ecdAtPosCalc’,ctypes.c_double),]

###Find or create the file path to the case file

cd = os.getcwd()

model_Path = os.path.realpath(’HFM’)

test = os.path.exists(os.path.join(cd,model_instance))
if test == False:

os.makedirs(os.path.join(cd,model_instance))

h = open(os.path.join(cd,model_instance + ’\InputFileName.in’),’w’)
h.write(configurationfile)
h.close()

print model_Path

### Load dl1
dll = ctypes.WinDLL(os.path.join(model_Path,dl1file))

### initialize flow model
dll.setmodulestring(ctypes.c_char_p(’FilePath’),ctypes.c_int(8),
ctypes.c_char_p(model_Path),

ctypes.c_int(len(model_Path)),

ctypes.c_int (0))

realtimeDataStructureQut = DataStructureOut(ctypes.c_double(-999.99),
ctypes.c_double(-999.99),
ctypes.c_double(-999.99),
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ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes

ctypes

.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.
.c_double(-999.

99),
99),
99),
99),
99),
99),
99),
99),
99),
99),
99),
99),
99),
99),
99),
99),
99),
99),
99),
99),
99),
99),
99),
99),
99),
99),
99))

dll.setmoduletable(ctypes.c_char_p(’Use_measured_choke_pressure_as_boundary’),

ctypes.c_int(39),

ctypes.byref (ctypes.c_double(1)),

ctypes.c_int (1),

ctypes.c_int (0),

91

www.manharaa.com



ctypes.c_bool(0))

### initialize flow model
def well_run(well_input):

### Run Well

X = np.zeros(44)
x =x + -999
x[0] =0

x[1] = well_input.time

x[2] = well_input.bitposition

x[5] = well_input.rotary_speed*2.*np.pi/60. # [rad/s]
x[8] = well_input.mudflowin / (1000. * 60.) # [m3/s]

x[9] = well_input.mud_density_in*1000. # [kg/m3]

x[10] = well_input.depthhole # [m]

x[11] = well_input.desired_emw * 1000. # [kg/m3]
x[17] = well_input.choke_press * le5 # [Pa]
x[20] = well_input.input_mud_temp +273.15 # [K]
x[30] = well_input.set_point_position # [m]
x[43] =0

realTable_well = (ctypes.c_double * len(x)) (*x)

friction = well_input.friction_a

tempmode = 0

XX = np.array([-999, -999, -999, tempmode, -999, -999, -999, friction])
config = (ctypes.c_double * len(XX)) (*XX)
dll.setmoduletable(ctypes.c_char_p(’Input_Configur’), ctypes.c_int(14),

ctypes.byref (config), ctypes.c_int(0), ctypes.c_int(7), ctypes.c_bool(0))

TimeP_well = ctypes.c_double(0)

### Input values into flow model
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d1ll.setmoduletable(ctypes.c_char_p(’Input_RealTime’), ctypes.c_int(14),
ctypes.byref (realTable_well), ctypes.c_int(43), ctypes.c_int(0),
ctypes.c_bool(0))
### Execute flow model
dll.runflowmodel (ctypes.byref (TimeP_well),ctypes.c_int(2),ctypes.byref (ctypes.c_double(0)),
### Get data from flow model
#print (TimeP_well.value)
dll.getrealtimeparameters(ctypes.byref (realtimeDataStructureOut),ctypes.c_int(6))

### realtimeDataStructureOut is now updated with all values

### Read choke pressure
obs_points = np.array([0])
observationPoints = (ctypes.c_int * len(obs_points)) (*obs_points)
sensordata = ctypes.c_double(-999.99)
statusP = ctypes.byref (ctypes.c_int(0))
for d in range(len(observationPoints)):
dll.getmodulearray(ctypes.c_char_p(’DataAtPos_pres’),
ctypes.byref (ctypes.c_int(14)), ctypes.byref (observationPoints),

ctypes.byref (sensordata), statusP)

###Prep data for output

well_meas.h_bit = well_input.bitposition

well_meas.p_bit = realtimeDataStructureOut.bhPresCalc/100000
well_meas.p_c = sensordata.value/100000

well_meas.friction_factor = realtimeDataStructureOut.frictionFactor
well_meas.dll = dll

well_meas.spp = realtimeDataStructureOut.sppCalc
well_meas.flowout_well = realtimeDataStructurelut.flowlOutCalc

well_meas.p_choke = realtimeDataStructureQOut.pChoke

well_meas.pit_gain = realtimeDataStructureOut.pitGainCalc

return well meas
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def hfm_save():

dll.setmoduletable(ctypes.c_char_p(’Save_stateMemory’), ctypes.c_int(15),

ctypes.byref (ctypes.c_double(1)), ctypes.c_int(0), ctypes.c_int(0),

ctypes.c_bool(0))

def hfm_load():

dll.setmoduletable(ctypes.c_char_p(’Load_stateMemory’), ctypes.c_int(15),

ctypes.byref (ctypes.c_double(1)), ctypes.c_int(0), ctypes.c_int(0),

ctypes.c_bool(0))

def hfm_shutdown():
dll.endd11()
FreeLibrary(dll._handle)

return
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